

Nano Plus: Science and Technology of Nanomaterials Journal home page: <u>https://www.stnanojournal.org/</u> ISSN: 2782-8166 (print) 2782-8174 (electronic)

THE 6TH INTERNATIONAL WORKSHOP/CONFERENCE ON NANOTECHNOLOGY ORGANIZED BY NANOTECHNOLOGY RESEARCH GROUP (*NANO*⁺), LADOKE AKINTOLA UNIVERSITY OF TECHNOLOGY OGBOMOSO, NIGERIA

IN COLLABORATION WITH NATIONAL SPACE RESEARCH AND DEVELOPMENT AGENCY (NASRDA), MUSA YAR'ADUA WAY, LUGBE, ABUJA

BOOK OF ABSTRACTS OF THE HYBRID CONFERENCE

THEME: NANOTECHNOLOGY FOR SOCIO-ECONOMIC DEVELOPMENT OF AFRICA

DATE: TUESDAY 22 - THURSDAY 24 NOVEMBER, 2022

VENUE: THE CONFERENCE HALL, NASRDA, LUGBE, ABUJA & ZOOM

Chairman

Prof. Mojeed O. Liasu Ag. Vice-Chancellor, LAUTECH, Ogbomoso, Nigeria

Host/Convener

Prof. Agbaje Lateef

Special Guest of Honour

Head, Nanotechnology Research Group (*NANO*⁺), LAUTECH, Ogbomoso, Nigeria

Co-Host

Prof. Adepoju T. J. Ogunkunle Dean, Faculty of Pure and Applied Sciences, LAUTECH, Ogbomoso, Nigeria Co-Chairman/Chief Host

Dr. Halilu A. Shaba Director-General/CEO, National Space Research and Development Agency (NASRDA), Abuja, Nigeria

LOC Chairperson **Dr. Benjamin G. Ayantunji** Director, Physical and Life Sciences, NASRDA, Abuja, Nigeria

Co-LOC Chairperson

Prof. Musibau A. Azeez Department of Pure and Applied Biology, LAUTECH, Ogbomoso, Nigeria

Senator Adeleke Mamora Honourable Minister of Science, Technology and Innovation, Abuja, Nigeria Guests of Honour

Senator Uche Ekwunife, Chairman, Senate Committee on Science, Technology and Innovation

Chief Henry Ikechukwu Ikoh, Honorable Minister of State, Science, Technology and Innovation

Senator AbdulFatai Buhari, Chairman, Senate Committee on Land Transportation Hon. Akinlade Akinremi, Chairman, House Committee on Research Institutions Mrs. Monilola Udoh, Permanent Secretary, Ministry of Science, Technology and Innovation

Mr. Taiye Williams, MD, LUBCON International Limited, Ilorin

KEYNOTE SPEAKER

Prof. Mohammed S. Haruna

Executive Vice-Chairman/Director-General,

National Agency for Science and Engineering Infrastructure (NASENI), Abuja

Speakers at the Conference

Prof. Omowunmi Sadik, Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, USA

Prof. Enock O. Dare, Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria

Dr. Mikael Syväjärvi, ALMINICA AB, Research Utilization and Innovation Capacity, Sweden

Prof. Ashok Vaseashta, CEO/CTO, International Clean Water Institute, VA, USA

Prof. Fabian. I. Ezema, Department of Physics, University of Nigeria, Nsukka, Nigeria

Prof. (Mrs) Esther Ikhuoria, Department of Chemistry, University of Benin, Nigeria

Prof. Chérif Dridi, Centre for Research on Microelectronics and Nanotechnology, Technopark of Sousse, Tunisia

Prof. N. Tabet, Department of Applied Physics and Astronomy, University of Sharjah, United Arab Emirates

Associate Prof. Hassan Soleimani, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS 32610 Seri Iskandar Perak Malaysia

Prof. Evariste B. Gueguim-Kana, Department of Microbiology, University of KwaZulu-Natal, Pietermaritzburg, South Africa

Prof. A.S. AbdulKareem, Department of Chemical Engineering, Federal University of Technology, Minna, Niger State, Nigeria

Prof. Sheriff Adewuyi, Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria

Prof. Ts. Dr. Uda Hashim, Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Malaysia

Dr. Lorika S. Beukes, Department of Microbiology, University of KwaZulu-Natal, Pietermaritzburg, South Africa

Dr. Elias E. Elemike, Department of Chemistry, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria

Dr. AbdulLateef Bakre, Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria

Dr. Jean Christopher Chamcheu, School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe Louisiana, USA

Dr. Shola Odusanya, Sheda Science and Technology Complex, Abuja, Nigeria

Dr. Okunola A. Alabi, Department of Biology, Federal University of Technology, Akure, Nigeria

SCHEDULE OF ACTIVITIES (GMT +1)

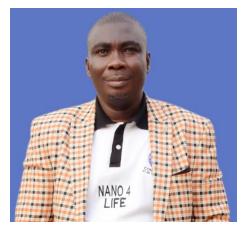
DAY ONE (TUESDAY, NOVEMBER 22, 2022) WORKSHOP ON THE SYNTHESIS, CHARACTERIZATION, AND APPLICATIONS OF NANOPARTICLES

S/N	TIME	ACTIVITIES	VENUE/ANCHOR
1.	8:00 - 9:45 am	Arrival and registration	Conference Room
2.	10:00 - 10:40 am	Overview of nanotechnology, biosynthesis of	Conference Room
		nanoparticles and applications- Prof. M.A. Azeez	
3.	10:40 - 10:50 am	Questions and Answer	Dr. J.A. Badmus
4.	10:50 - 11:10 am	Tea Break	
5.	11:20 am	Courtesy visit to DG/CEO, NASRDA	
6.	11:40 - 12:30 pm	Characterization techniques in Nanotechnology-	Conference Room
		Prof. T.B. Asafa & Prof. M.O. Durowoju	
7.	12:30 - 1:00 pm	Questions and Answer	Prof. T.A. Yekeen
8.	1:00 - 2:00 pm	Lunch	Conference Room
9.	2:00 -6:00 pm	Practical Session & Interaction	Prof. I.C. Oladipo, Dr. E.A.
			Adebayo, Dr. J.A. Badmus, &
			Dr. M.K. Awodele: Incubation
			Centre, NASRDA

DAY TWO (WEDNESDAY, NOVEMBER 23, 2022): OPENING CEREMONY

Time	Activities	Anchor/Presenter
9:00	Arrival and registration of participants	Prof. T.B. Asafa/Dr. M.K. Awodele/NASRDA
9:45	Arrival of dignitaries and special guests	Protocol
10:00	National anthem and national prayers	NASRDA
10:05	Introduction of guests	NASRDA
10:10	Covener/Host's speech	Prof. A. Lateef
		Head, Nanotechnology Research Group, LAUTECH,
		Ogbomoso
10:20	Co-Chairman/Chief Host's speech	Dr. Halilu A. Shaba
		DG/CEO, NASRDA, Abuja
10:30	Chairman's speech	Prof. Mojeed O. Liasu
		Acting Vice-Chancellor, LAUTECH, Ogbomoso
10:40-	Goodwill messages	NASRDA
10:50		
10:50	Minister's speech and Delacaration of the	Senator Adeleke Mamora
	Conference Open	Honourable Minister of Science, Technology, and
		Innovation, Federal Republic of Nigeria
11:00	Citation of keynote Speaker	Prof. T.B. Asafa
11:05-	Keynote Speech	Prof. Mohammed S. Haruna
11-45		Executive Vice-Chairman/Director-General,
		National Agency for Science and Engineering
		Infrastructure (NASENI), Abuja
11:50	Closing Remark/Vote of thanks	Dr. B.G. Ayantunji
		Chairperson, LOC
12:00	Photograph session	NASRDA

12:20	Short break		
12:25	Citation of lead speaker Prof. M.A. Azeez		M.A. Azeez
12:30-	Lead paper: The race towards African socio-	Prof. H	E.O. Dare
1:20		Depar	tment of Chemistry, Federal University of
	nano-enabled system as game changer	Agricu	ılture, Abeokuta, Nigeria
1:30-	Lunch	h breal	k
2:10			
2:10-	Invited Lecture 3: Nanotechnology for	Prof. A	A.S. Abdulkareem
2:50	sustainable food safety Nanotechnology Research Group, Africa		echnology Research Group, Africa Centre of
			ence on Mycotoxins and Food Safety, Federal
			rsity of Technology, Minna, Niger State,
	DISCUSSION/INT	Nigeri FRAC	
	Discussion	LINAC	
3:10	BREAK-OUT SESSIONS ((NOVI	EMBER 23, 2022)
	SESSION A (PHYSICAL)	/ENGI	NEERING)
	Moderators		Prof. Y.K. Sanusi
	ABSTRACT NUMBER/TITLE		AUTHORS/PRESENTERS
3:20	Invited Lecture 4: The application of nanotechnology	ogy	Ezema, F.I
	for combating environmental and climatic issue	es	Nano Research Group, Department of
			Physics and Astronomy, University of
			Nigeria, Nsukka, Nigeria
3:50	2022/P001: Mathematical model on the dynamics of		Mohammed, I.A., Bello, F.M., and
1.00	Covid-19 in Nigeria		Gwandum, G.S
4:00	2022/P002: Integrating nanotechnology into		Muhammad, I.D., and Arudi. I.S
4:10	undergraduate education in Nigeria 2022/P003: Biosynthesis of silver nanoparticles u	using	Ibrahim, I., Hussaini, S.A., and Muhammad,
4.10	aqueous <i>Phoenix dactylifera</i> L. extract-characteris	0	A
	and study of water purification	auon	
4:20	2022/P004: Computational study of the effect of	f Fe-	Muhammad, I.D., Arudi. I.S., and
	doping on the Young's modulus of single-w		Arogundade, I.I
	zirconia nanotubes using finite element analysis		
4:30	2022/P005: Fabrication and characterization of g	green	Awodele, M.K., Oyeshola, H.O., Ajiboye,
	synthesized graphene nanoparticles/polymer-b	based	
	counter electrodes in dye-sensitized solar cells		Sanusi, Y.K
4:40	2022/P010: Development of nano-based products		Muhammad, I.D., Awang, M., and
	conception to commercialization: a case stud	y of	KuShaari, K
4.50	controlled released fertilizer in Malaysia	, th -	Abdulmalik M.O. and Danla J: E
4:50	2022/P011: Influence of Perovskite thickness on performance of silver-doped NaZnBr ₃ Perovskite		Abdulmalik, M.O., and Danladi, E
	cells using SCAPS software	Solar	
5:00	Participants are to move to	the ge	neral room for closing
	BREAK-OUT SESSIONS (N	0	6
	SESSION B (BION		CAL)
	Moderators		Prof. I.C. Oladipo
	ABSTRACT NUMBER/TITLE		AUTHORS/PRESENTERS
3:10	Invited Lecture 5: How safe are nanoparticles:		Alabi, O.M
	analyzing data from systemic, reproductive, and	d	Department of Biology, Federal University of
	cytogenetic studies in different models		Technology, Akure, Nigeria


3:50	2022/B006: Antioxidant capacity and lipid peroxidation	Badmus, J.A., Alabi, T.D., Olayeni, T.B.,	
5.50	responses of broiler chickens exposed to <i>Euphorbia</i>	Azeez, M.A., Akeredolu, B.R., Owoade, S.A.,	
	lateriflora synthesized silver nanoparticles	Okesola, P.E., Adebayo, Z.O., Ishola, O.Q.,	
	<i>menjoru synthesized sirver mitoparticles</i>	and Adebayo, E.A	
4:00	2022/B007: Impact of silver nanoparticles synthesized	Badmus, J.A., Olayeni, T.B., Yekeen, T.A.,	
	using Euphorbia lateriflora on Broiler chicks (Gallus gallus	Ojewale, B.A., Ogunsola, D.T., Issa, B.F.,	
	<i>domesticus</i>) growth performance and biochemical	Jokotade, A.O., Febian, H.C., and Aderinola,	
	indices	M.D	
4:10	2022/B008: Phytotoxic and biomedical activities of	Ibikunle, G.J., Akintola, A.O., Ayoola, P.B.,	
	synthesized silver nanoparticles using the seed extract	Awotoye, A.J., Oguejiofor, C., and	
1.00	of <i>Morinda citrifolia</i> (Noni)	Ogunsona, S.B	
4:20	2022/B009: Fungi and their derivatives: versatile tools in	Adebayo, E.A., and Oke, M.A	
4:30	nanotechnology 2022/B012: <i>In-vitro</i> anti-hypertensive, anti-oxidant and	Oladipo, I.C., Lateef, A., Azeez, M.A., Asafa,	
4.30	antifungal properties of synthesized gold nanoarticles	T.B., Yekeen, T.A., and Ogunsona, S.B	
	from <i>Strophanthus hispidus</i> leaf aqueous extract	1.D., Tekeen, 1.M., and Ogunsona, 5.D	
4:40	2022/B013: Characterization and biomedical	Oladipo, I.C., Lateef, A., Azeez, M.A., Asafa,	
1110	applications of titanium dioxide nanoparticles	T.B., Yekeen, T.A., and Ogunsona, S.B	
	synthesized from <i>Lecaniodiscus cupanioides</i> leaf extract	, , , , , , , ,	
4:50	2022/B014: Characterization and biomedical	Oladipo, I.C., Lateef, A., Azeez, M.A., Asafa,	
	applications of titanium dioxide nanoparticles	T.B., Yekeen, T.A., Ogunsona, S.B., and	
	synthesized from Datura stramonium seed extract	Adewoyin, A.G	
5:00	Participants are to move to the ge	3	
	DAY THREE (THURSDAY, NOVEMBEI		
9:00	Invited Lecture 6: Nano-innovative materials for food	-	
	Adewuyi, S		
9:40	Department of Chemistry, Federal University Invited Lecture 7: SMART sustainable nanotechnolo		
9:40			
	development for good health and well-being Dridi, C		
	NANOMISENE R&D Laboratory LR16CRMN01, Ce	enter of Research on Microelectronics and	
	Nanotechnology (CRMN) of Sousse, Technopole of Sousse, B.P334, 4054 Sahloul Sousse, TUNISIE		
	BREAK-OUT SESSIONS (DAY THREE -	,	
	SESSION A1 (PHYSICAL/ENG		
	Moderators	Prof. M.O. Durowoju	
	ABSTRACT NUMBER/TITLE	AUTHORS/PRESENTERS	
10:20	Invited Lecture 8: Impact of graphene nanofluid on	H. Soleimani	
	ionic polarization in reservoir sandstone under electric	Department of Geoscience, Universiti	
10.50	double layer	Teknologi Petronas, Perak, Malaysia	
10:50	Invited Lecture 9 : Hierarchical integration of electrospinning and 3D/4D printing process for rapid	Vaseashta, A CEO/CTO, International Clean Water	
	prototyping	Institute, VA, USA; Professor, Transylvania	
	prototyping	University of Brasov, Brasov, ROMANIA,	
		IEEN Chaired Professor of Nanotechnology,	
		Academy of Sciences of Moldova	
11:20	Comments, Questions, and Answers		
11:30	Tea Break		
12:00	2022/P015: An analysis of buoyancy-driven flow and	Sangotayo, E.O., and Ogidiga, J.O	
	heat exchange in a cylindrical channel filled with a		
	water-Cu nanofluid		
12:10	2022/P016: Fabrication, characterization and	Adewumi, H.K., Ayodele, A.J., Oyeshola,	

	applications of multiwall-carbon nanotubes-Al ₂ O ₃	H.O., Adewumi, A.S., Sanusi, Y.K., and
	ceramic composites	Fajinmi, G.R
12:20	2022/P058: Efficiency of carbon nanotubes from	Gado, N., Yahaya, I.M., and Izuagie, T
	environmental waste as cement admixture	
12:30	2022/P059: Evaluation of chemical and antimicrobial	Sulaiman, H., Yahaya, I.M., and Izuagie, T
	activities of silver nanoparticles synthesised from	
	Calotropis procera leaf extract	
12:40	2022/P022: Development of copper polymer based	Oyeshola, H.O., Atere, D.A., Ojeniyi, F.A.,
	grown nanocomposite thin film for photovoltaic	Lawal, M.A., Atanda, O.S., Adejumo, B.K.,
	application	Raheem, K.K., Alamu, Q.A., Adewumi, H.K.,
		and Sanusi, Y.K
12:50	2022/P023: Green synthesised silver nanoparticles and	Yahaya, M.I., and Tambari, M.S
	their potential as cement admixtures	
1:00	2022/P025: Comparative study of inhibition potentials of	Asafa, T.B., Odusote, J.K., Ogbesanya, V.O.,
	gold-silver alloy nanoparticles on mild steel in 3.5%	Opatola, E.A., Lateef, A., Durowoju, M.O.,
	NaCl and 1.0 M HCl solutions	Azeez, M.A., Yekeen, T.A., Oladipo, I.C.,
		Adebayo, E.A., Badmus, J.A., Sanusi, Y.K.,
1 10	Lunch Brea	and Adedokun, O
1:10 2:10	2022/P027: Preparation and pigmentation of carbon	
2.10	nanotubes for biomedical application	Uselegh, L.Y., Tijani, J.O., Alex Ikechukwu Ajai, A.I., and Abdulkareem, A.S
	nanotubes for biometical application	Ajai, A.i., and Abdulkareeni, A.S
2:20	2022/P028: Effects of beryllium on the stability,	Agbolade, L.O., Tijjani, A., Adewale, A.A.,
2.20	electronic and optical properties of graphene: a first	Oyeshola, H.O., Sanusi, Y.K., and U.
	principles approach	Hashim, M.N.A
2:30	2022/P029: Synthesis and characterization of carbon	Oyeshola, H.O., Lawal, A.M., Balogun, S.W.,
	quantum dots/titanium dioxide hybridized photoanode	Adewale, A.A., Murithador, F.A., Ojeniyi,
	for improved quantum dots sensitized solar cell	F.A., and Sanusi, Y.K
2:40	2022/P031: Electromagnetic adsorption and polarization	Sikiru, S., Soleimani, H., Abiodun, A.J., and
	mechanism on reservoir sandstone with nanofluid	Sanusi, Y.K
	interaction for oil mobility	
2:50	2022/P038: Synthesis of cellulosic nanocrystal	Badmus, O.K., Awujola, A.O., Adegoke,
	encapsulated limonene and its application as an insect	A.K., and Alayande, S.O
	pest repellent	
3:00	2022/P039: Pectin-template derived from Parkia biglobosa	Ibraheem, S.A., Audu, E.A., Jaafar, M.,
	as a novel route for the synthesis of silver nanoparticles	Atabat, A.J., Tanimu, B.F., Yahaya, J.Y., and
		Barminas, J.T
3:10	2022/P041: Synthesis and application green silver	Lawal, O.M., Salisu, Z.M., Barminas, J.T.,
	nanoparticles on cotton fabric	Umar, S.M., Ukpong, M.K., Suleiman, A.M.,
		Ilyasu, A., Suleiman, I.A., Iroegbu, U., and
		Oneli, I.C
3:20	2022/P072: Synthesis, characterization and application of	Ayelabola, J.A., Abiola,, B.E*., Olabemiwo,
	a composite adsorbent in remediation of bitumen-	O.M and Esan, A.O
	polluted water	
3:30	Invited Lecture 10 : Nanotoxicity: are our allayed fears	Elias Emeka Elemike
	about toxicity of nanomaterials correct?	Department of Chemistry, Federal
		University of Petroleum Resources, Effurun,
4.00	Invited Lecture 11. Consider Juster and state	Nigeria
4:00	Invited Lecture 11: Semiconductor nanostructures:	Uda Hashim Institute of Nano Electronic Engineering
	Nanoelectrodes and nanowires recent advances in biosensors technology	Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Malaysia
	Diosensors rectinology	Universiti malaysia reriis, malaysia

4:30	Participants are to move to the general room for	Polling and Closing of the conference
SESSION A2 (PHYSICAL/ENGINEERING)		
12:00	24 NOVEMBER, 202 2022/P042: Development of functional cotton fabric via	
12:00	chemically synthesized silver-nano coating	Ukpong, M.K., Salisu, Z.M., Barminas, J.T.,
	chemically synthesized silver-hano coating	Umar, S.M., Lawal, O.M., Suleiman, A.M.,
		Ilyasu, A., Sulaiman, I.A., Iroegbu, U., and Oneli, I.C
12:10	2022/P046: Effect of nanoparticles on biogas yield of	Adebayo, A.O., Olaniran, J.A., and Omoyeni,
12.10	cocoa pod co-digested with chicken manure at	O.D
	mesophilic temperature	
12:20	2022/P047: Process optimization of furfural production	Abdulbaqi, A
	from algae	1
12:30	2022/P050: Electromagnetic pigging using	Wansah, J.F., Akpan, J.J., Achimugu, A.,
	superparamagnetic nanomaterials: a review	Ocheje, J.A., Akeredolu, B.J., and Iyen, C
12:40	2022/P051: Recovery of oil from drilling waste using	Achimugu, A
	nanomaterials: a review	
12:50	2022/P052: Photoresponsive performance of MoS ₂ -based	Akeredolu, B.J., Ahemen, A., Amah, N.,
	photodetector using improved liquid phase exfoliation	Onojah A.D., Shakya, J., Gayathri, H.N., and
1.00	method	Ghosh, A
1:00	2022/P053: Distribution Rare Earth Elements in	Shelle, R.O.D., and Oyatola, O.O
1 1 0	sediment cores from Lagos Lagoon, Nigeria Lunch Brea	[]
1:10		
2:10	2022/P056: The availability of critical minerals for	Aliu, H.O
	Nigeria's renewable energy and economic development: an assessment of the role of nanotechnology	
2:20	2022/P057: Microstructural and nanomechanical	Dada, M., and Popoola, P
2.20	properties of AlCoCuFeSi high entropy alloys for	Daua, W., and I opoola, I
	renewable energy applications	
2:30	2022/P060: Green synthesized carbon nanotubes as	Isha, A., Yahaya, I.M., and Izuagie, T
	adsorbent of environmental toxic metals	
2:40	2022/P061: Effect of TiB ₂ addition on the microstructure	Jamiru, T., Popoola A.P.I., Sadiku E.R., and
	evolution of FeCrV15+TiB ₂ deposit fabricated via laser	Aramide B.P
	cladding technique	
2:50	2022/P062: Experimental study of the electrical	Uwa, C.A., Jamiru, T., and Sadiku, E.R
	conductivity and thermal conductivity property of	
	micro-based Al-Cu-Nb-Mo alloy	
3:00	2022/P066: Fabrication of a facile β -cyclodextrin based	Mamman, S., Shuaibu, B.S., Isah, J.,
0.10	nano-composite towards 2,4-dinitrophenol removal	Mohammed, J., and Osuegba, O.S
3:10	2022/P069: Production of graphene using local contents	Elemo, E., Adegbe, A., and Obarolo, A
3:30	Invited Lecture 10 : Nanotoxicity: are our allayed fears	Elias Emeka Elemike
	about toxicity of nanomaterials correct?	Department of Chemistry, College of
		Science, Federal University of Petroleum
4:00	Invited Lecture 11: Semiconductor nanostructures:	Resources, Effurun, Nigeria Uda Hashim
4.00	Nanoelectrodes and nanowires recent advances in	Institute of Nano Electronic Engineering,
	biosensors technology	Universiti Malaysia Perlis, Malaysia
4:30	Participants are to move to the general room for	
	BREAK-OUT SESSIONS (DAY THREE –	5 5
	SESSION B1 (BIOMEDI	,
	Moderators	,
	wioucial015	Dr. J.A. Badmus

ABSTRACT NUMBER/TITLE Invited Lecture 12: Drug delivery and nanoparticles:	Bakre, L.G
0 1	
recent advances and prospects	Department of Pharmaceutics and
	Pharmaceutical Technology, Olabisi
	Onabanjo University, Sagamu, Nigeria
Comments. Questions and Answers	
2022/B019: Development and stability studies of	Akinsipo, O.B., Dare, E.O., Oladoyinbo, F.O.,
diosgenin-integrated oil-in-water nanoemulsified system	Katare, D.P., and Sanni, L.O
for its potential drug delivery application	
Tea Break	
2022/B020: Recent advances of biotechnological	Alabi, T.D., and Badmus, J.A
limitations	
2022/B016: Biosynthesis of silver nanoparticles from	Mohammed, M.O., Suleiman, M.M., Yusuf,
agro-waste (corncob) and its antibacterial effect in water	T.B., Aderinkola, T.A., Abubakar, A.A.,
treatment	Oladuntoye, M.T., and Ola-Williams, I
	Yusuf-Omoloye, N.A., Azeez, L.A.,
	Adeyemi, F.M., Sule, W.F., Ajigbewu, H.O.,
11 0 1	and Adegbite-Badmus, M.K
	Ngwu, M.I., Ozota, G.O., Emencheta, S., and
•	Ozioko, C.A
	Adewoyin, A.G., Oladipo, I.C., Akintola,
, , , ,	A.O., Oyeniyi, O.D., Oke J.V., and Afolabi,
	S.T
	Ola, A.K., Ojebiyi, O.O., Akinwumi, A.O.,
	Lateef, A., Sanu D.O., Oladeji H.O., and
	Fajimolu, O.M
	Idowu, A.O., Ojebiyi, O.O., Lateef, A.,
	Odunsi, A.A., Ola, A.K., and Akinola, A.O
	Usman, A.B, Dozie-Nwachukwu, S.O.,
	Falayi, M.A., Onodugo, C.D., Onwuazor,
Terminutu motils M.A. Lawson (Completaceae)	O.P., and Odusanya, O.S
2022/B035: Optimization of green synthesis of gold	Onwuazor, O.P., Dozie-Nwachukwu, S.O.,
	Falayi, M.A., Onodugo, C.D., Usman, A.B.,
nunoputieres nont comorcium giutinosum	and Odusanya, O.S
2022/B036: Phytosynthesis of gold nanoparticles from an	Usman, A.B., Dozie-Nwachukwu, S.O.,
	Onwuazor, O.P., Onodugo, C.D., Falayi,
1 0	M.A., and Odusanya, O.S
	Onodugo, C.D., Dozie-Nwachukwu, S.O.,
	Onwuazor, O.P., Usman, A.B., Falayi, M.A.,
	and Odusanya, O.S
	Olugbojo, J.A., Akinyemi, A.A., Obasa, S.O.,
	and Dare, E.O
	,
	Olugbojo, J.A., Akinyemi, A.A., Obasa, S.O.,
based chitosan–Silver nanocomposites for antimicrobial	and Dare, E.O
application in fisheries and aquaculture	,
	 2022/B019: Development and stability studies of diosgenin-integrated <i>oil-in-water</i> nanoemulsified system for its potential drug delivery application Tea Break 2022/B020: Recent advances of biotechnological approaches in nanotechnology: applications and limitations 2022/B016: Biosynthesis of silver nanoparticles from agro-waste (corncob) and its antibacterial effect in water treatment 2022/B018: Bio-fabrication of silver nanoparticles from <i>Azanza garckeana</i> seed extract: A promising alternative to conventional antibiotic therapy against Vancomycinresistant <i>Enterococci</i> 2022/B021: Antimicrobial susceptibility pattern of <i>Enterococcus</i> isolated from oral and rectal cavity of <i>Sus scrofa domestica</i> (domestic pig) 2022/B024: Green synthesis of silver nanoparticles using <i>Sarcocephalus latifolius</i> root aqueous extract for biomedical application 2022/B026: Synthesis and effects of sunflower-mediated calcium phosphate nanoparticles on physical and sensory properties of broiler chicken 2022/B033: Applications of nanotechnology in animal nutrition: a review 2022/B035: Optimization of green synthesis of gold nanoparticles from <i>Terminalia mollis M.A.</i> Lawson (Combretaceae) 2022/B036: Phytosynthesis of gold nanoparticles from an ethnomedicinal plant, <i>Khaya ivorensis</i> A. Chev. (Meliaceae) 2022/B037: Biosynthesis, characterization and biomedical applications of gold nanoparticles from cassava (<i>Manihot esculenta</i>) leaf extract 2022/B037: Biosynthesis, characterization and antibacterial activities of cerium oxide and zinc oxide ranoparticles no fish pathogens - <i>Vibrio cholerae</i> RC3 and <i>Escherichia coli</i> C214 - a comparative study 2022/B044: Synthesis and characterization of maggot-

3:20	2022/B073: Nanoparticles in the soil environment and	Azeez, M.A., Durodola, F.A., Adubi, A.O.,
5.20	potential for agricultural improvement	Lateef, A., Yekeen, T.A., and Adebayo, E.A
4:20	Participants are to move to the general room for	
	SESSION B2 (BIOMEDICAL)	
	24 NOVEMBER	· ·
11:20	2022/B030: Green synthesis of silver nanoparticles using	Adeyemi, O.E., Omoteso, O.A., and Ajala.
	Mangifera indica stem bark extract and formulation of its	T.O
	pharmaceutical gel for antimicrobial and antioxidant	
	applications	
11:30	Tea break	
12:00	2022/B032: Characterization and antimicrobial	Egonu, S.N., and Udengwu, O.S
	evaluation of biomimetically synthesized silver	
	nanoparticles using aqueous leaf extract of Morinda	
	lucida Benth (Rubiaceae)	
12:10	2022/B045: Biogenic silver nanoparticles from two	Ogunmola, O.O., Larayetan, R., Ayeni, G ^{5,6} .,
	species of Malvaceae: Synthesis, antimalarial,	Majolagbe, O.N., and Adedosu, T.A
	antitrypanosomal, antimicrobial efficacies and their	
	potential towards HeLa cell line	
12:20	2022/B048: GC-MS analysis and antibacterial activities	Amodu, S, Aina, D.A., Ezeamagu, C.O.,
	of silver-mediated nanoparticles using ethanol extract of	Oyewole, T.E., Adewunmi, G.A.,
	Cassia sieberiana DC	Animashaun, R.O., and Adaramola, F.B
12:30	2022/B049: Biogenic synthesis and antibacterial activities	Amodu, S., Aina, D.A., Ezeamagu, C.O.,
	of silver-mediated nanoparticles using pulp extract of	Oyewole, T.E., Adewunmi, G.A.,
	Dacryodes edulis	Animashaun, R.O., and Ogunwenmo, K.O
12:40	2022/B054: Synthesis, characterization and antifungal	Atanda, S.A., Shaibu, O.R., and Agunbiade,
	efficacy of copper-chitosan nanoparticles	F.O
12:50	2022/B055: Biosynthesis of silver nanoparticles using	Adelere, I.A., and Lateef A
	bacterial feather hydrolysates for the enhancement of	
	growth and nutraceutical properties of leafy vegetables	
1:00	2022/B063: Green synthesis, characterization, antimicrobial	Raimi, O.R., Lateef, A., Raimi, M.A., Azeez,
	activity and <i>in vivo</i> cytotoxicity test of silver nanoparticles for	Z.M., Afolabi, F., and Afolabi, O
1:10	biomedical applications Lunch Brea	/ /
2:10	2022/B064: Influence of valerate complexation and	Nasir-Naeem, K.O., and Shittu, O.K
	bromelain encapsulation on morphological	
	characteristics of polyhydroxybutyrate micronized	
2:20	particles NANO/B065: Optimization of crosslinked	Kalu AO Equip EC Jigam AA and
2.20	starch/graphene oxide nanocomposite films for fruits	Kalu, A.O., Egwim, E.C., Jigam, A.A., and Muhammed, H.L8
	and vegetable packaging	Wunannieu, 11.Lo
2:30	NANO/B067: Mycelia and lipase inhibitory properties	Ajayi, V.A., and Lateef, A
2.00	of <i>Cassia fistula</i> -mediated gold nanoparticles	
2:40	NANO/B068: Eco-friendly synthesis of silver	Abedo, A.J., and Abutu, S.R
	nanoparticles using stem bark of <i>Jatropha tanjorensis</i> and	
	evaluation of anti-trypanosomal activity	
2:50	NANO/B070: Biofabricated Ti-AgNPs in functionalized	Aguda, O.N., and Lateef, A
	nanotextiles inhibited MDR bacterial strains and fung	0,
3:00	NANO/B071: Exploration of vertebrate animal wastes	Abodunrin, A.E., Yekeen, T.A., Azeez, M.A.,
. =	for the green synthesis of nanoparticles: A review	Lateef, A., Badmus, J.A., and Adebayo, E.A
4:20	Participants are to move to the general room for	

WELCOME ADDRESSES

Prof. A. Lateef *Host and Head, Nanotechnology Research Group (NANO⁺), LAUTECH, Ogbomoso, Nigeria*

I am delighted to welcome you to the 6th international conference on nanotechnology of our research group, LAUTECH Nanotechnology Research Group (*NANO*⁺) in collaboration with the National Space Research and Development Agency (NASRDA), with

the theme 'Nanotechnology for Socio-economic Development of Africa'.

This is the first time that our conference will be held outside our University, LAUTECH which is a milestone in our quest to partner with stakeholders to deepen nanotechnology discourse in the country and beyond. I thank the Director-General of NASRDA, Dr. Halilu A. Shaba and his worthy team for the partnership. At this conference, we will listen to 12 invited lecturers and 73 abstracts will be presented.

The impact of nanotechnology on economic development is huge; with estimated worth of \$3 trillion in 2020, provision of about 6 million jobs and it has been predicted to account for 10% of the world's GDP by 2030. Africa must not watch in the unfolding scenario that nanotechnology presents, and the time to act is now.

Nanomaterials are exploited in all facet of human endeavours, and the applications increase daily - food and agriculture, health, industries, engineering, environment, security and defence, water, energy, sport, and consumer products/services. They represent potent tools that can be used to deliver on the SDGs of UN.

In the quest to place Nigeria among comity of players in nanotechnology, our multidisciplinary research group, which was formed in 2014, has made contributions to promote nanotechnology R&D in Nigeria. They can be summarized as follows:

- 1. Organization of workshops/conferences on nanotechnology in 2017, 2018, 2019, 2020, 2021 and publications of conference papers in Nigeria (*Science Focus; Nano Plus: Science and Technology of Nanomaterials*) and United Kingdom (*IOP Conference Series: Materials Science and Engineering*).
- 2. Mentoring of students and academics in more than twenty universities and other institutions in Nigeria and beyond, as well as expanding the outreach of nanotechnology discourse to students of primary and secondary schools.
- 3. We have deepened nanotechnology discourse in several electronic and print media in culminating in more than 40 press releases/interviews. Our website (<u>www.lautechnanotech.com</u>) is robust, informative, and regularly updated. Since its launch in 2016, it has received more than 124,600 visitors.

- 4. Members of *NANO*⁺ remain the most prolific in nanotechnology R&D in Nigeria having published more than 150 articles in various areas of nanotechnology since 2015. Five members of the group emerged among the top 12 nanotechnology researchers in Nigeria as indexed in Scopus (2010-2020).
- 5. Development of nano-based products: nanopaints, nanotextiles, nanopesticides, nanobiocides, nanofertilizers, nanoadsorbents, nanofilters and DSSCs.
- 6. Establishment of the first specialized journal on nanotechnology in sub-Saharan Africa, '*Nano Plus: Science and Technology of Nanomaterials'*.

It our fervent hope that these efforts and those from other sister research groups on nanotechnology and scholars in this field will be complemented by the government at providing us with policy guidelines on nanotechnology R&D in Nigeria and dedicated capital to develop nanotechnology infrastructure.

South Africa that we started the nanotechnology journey together in 2006 has dedicated more resources in this area, and has now moved to translational research. It has developed nano-based products, standards and has commendable number of patents. It has succeeded in completing a 10-year development plan on nanotechnology (2010-2019). For us, as a nation, we need to move faster to benefit from the fruits of nanotechnology. Iran, despite all manners of sanctions realized \$550 million from nanotechnology enterprise in 2020, with projection of \$1 billion by 2025.

I therefore call on the federal government of Nigeria to finalize the passage of nanotechnology policy on nanotechnology, establish an agency to drive nanotechnology agenda for the country, and dedicate funds for its promotion and R&D. Establishment of centres of excellence in nanotechnology is germane to realize the lofty potentials of the country in this field, and with the leadership that we have offered, LAUTECH deserves to host such centre. This challenge should be taken up FMSTI, TETFund, NASENI, NASRDA and angel investors.

On behalf of my group, I appreciate the honourable minister, STI, the permanent secretary, the Director of Chemical Technology in the ministry for the various supports offered to the group since 2018. I appreciate the leadership of LAUTECH (past and present) for believing in us and support for our cause. We appreciate the recognition that was given to our group during the 14th combined convocation ceremonies of the University in April, 2022. I equally thank all our colleagues in academia, our guest lecturers, LAUTECH community, collaborators, enthusiasts, industrialists, sponsors, students, pressmen and family members for supporting our activities over the years.

Once again, I welcome you to LAUTECH-NASRDA NANO 2022 and wish us fruitful deliberations and a rewarding experience at the conference.

Thank you and God bless.

SPEECH PRESENTED BY DIRECTOR-GENERAL AND CHIEF EXECUTIVE OFFICER, NATIONAL SPACE RESEARCH AND DEVELOPMENT AGENCY (NASRDA), DR. HALILU A. SHABA AT THE OPENING CEREMONY OF THE 6TH INTERNATIONAL WORKSHOP/CONFERENCE ON NANOTECHNOLOGY

Protocols:

I welcome you all to our beautiful campus for this very important workshop/conference. Our objective at NASRDA is always to work with all stakeholders in promoting the frontiers of new and emerging technology in order to provide solutions to problems that are peculiar to us as a Nation using Space Science and Technology for socioeconomic development.

I want to use this occasion to congratulate the LAUTECH Nanotechnology Research Group (*NANO*⁺) for its tenacity and commitment to the expansion of the frontiers of knowledge in

the area of Nanotechnology. The 6th annual workshop/conference is the testament of your commitment. At a time when most organizations and associations are finding it difficult to organize a conference, you have kept the flag flying even during Covid-19 pandemic.

Nanotechnology is the manipulation of matter on a near-atomic scale to produce new structures, materials and devices. The technology promises scientific advancement in many sectors such as medicine, consumer products, energy, materials and manufacturing. Nanotechnology refers to engineered structures, devices, and systems. Nanomaterials have a length scale between 1 and 100 nanometers. At this size, materials begin to exhibit unique properties that affect physical, chemical, and biological behavior. Researching, developing, and utilizing these properties is at the heart of new technology.

Space Science and Technology is the ultimate frontier of technological innovation, hence, NASRDA cannot take a back seat in the area of innovation. It is consequent upon this that the collaboration with the LAUTECH Nanotechnology Research Group is of optimum importance. We will do all that is expected within our ability to ensure that this relationship yields a result that is beneficial to Nigeria in particular and the world in general.

I welcome you once more to Obasanjo Space Centre, the campus of the premiere Space Agency in Africa. Have a wonderful deliberation.

Thank you

WELCOME SPEECH DELIVERED BY THE ACTING VICE-CHANCELLOR OF THE LADOKE AKINTOLA UNIVERSITY OF TECHNOLOGY (LAUTECH), OGBOMOSO, PROFESSOR MOJEED OLAIDE LIASU AT THE 6th INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY ORGANIZED BY THE NANOTECHNOLOGY RESEARCH GROUP (*NANO*⁺) OF LADOKE AKINTOLA UNIVERSITY OF TECHNOLOGY, OGBOMOSO IN COLLABORATION WITH THE NATIONAL SPACE RESEARCH AND DEVELOPMENT AGENCY (NASRDA) HELD ON NOVEMBER 22-25, 2022

The Honourable Minister, Science, Technology and Innovation, Federal Republic of Nigeria, Senator Adeleke Mamora, Permanent Secretary, Federal Ministry of Science, Technology and Innovation, Director-General of NASRDA, Dr. Halilu A. Shaba, Principal Officers, Ladoke Akintola University of Technology, Ogbomoso Directors-General of Agencies and Institutes, The Lead Speaker, Invited Lecturers and all other attendees from across the globe, Ladies and gentlemen,

I am glad to be here today to welcome you to the 6th International Conference on Nanotechnology with the theme 'Nanotechnology for Socio-economic Development of Africa'. This year's conference is organized by our illustrious Nanotechnology Research Group (*NANO*⁺), in collaboration with the prestigious National Space Research and Development Agency (NASRDA) to forge a common front at promoting nanotechnology R&D in Nigeria and beyond.

Going down the memory lane, *NANO*⁺ started advocacy on nanotechnology in 2017 by exposing scholars to rudiments of synthesis of nanoparticles and their applications. By 2018, activities of the group attracted the attention of the Federal ministry of science, technology and innovation, with their participation in their conferences. So, we are happy at the current milestone, that an agency of federal government has partnered with the group to organize LAUTECH-NASRDA NANO 2022. This is highly commendable.

Ladoke Akintola University of Technology, Ogbomoso, the best state University in Nigeria has come of age, and is currently well-ranked among her peers. This year, the University was ranked as the 10th in Nigeria by the Times Higher Education (THE). These feats would not have been possible without excellent researches and dedicated staff of the University. In April this year, the University recognized some of our outstanding scholars of which two members of *NANO*⁺ were among; Prof. A. Lateef

and Prof. M.A. Azeez. The contributions of the research group to the growth of the University were also acknowledged in my speech at the 14th combined convocation ceremonies.

The Honourable minister Sir, LAUTECH has established itself as a leader in nanotechnology enterprise in Nigeria, and should be supported for greater achievements. Five of our scholars are among the top 20 scholars of nanotechnology in Nigeria going by papers indexed in Scopus in a decade (2010-2020). I therefore call on you to use your good office to mobilize supports for the establishment of a centre of excellence on nanoscience and nanotechnology at LAUTECH, Ogbomoso. Our *NANO*⁺ has demonstrated competence in cutting-edge research, publications, training, and mentoring towards creation of critical mass of experts in nanotechnology. The group also established the first journal of nanotechnology (*Nano Plus: Science and Technology of Nanomaterials*) in the sub-Saharan Africa.

Nanotechnology is an enviable catalyst for national development, because of its cosmopolitan applications. It can be deployed to solve myriads of problems that confront us as a nation- environmental degradation, lack of clean water, energy crisis, food insecurity, physical insecurity, infrastructural deficit and burden of diseases among others. Creatively, nanotechnology exploits lead to innovation and development of new processes and products, with great impacts on job creation and stimulation of economy. Thus, Nigeria must act fast to imbibe nanotechnology for growth and development.

Once again, I applaud the Director-General of NASRDA and his team for this partnership. It is a step in the right direction, and I do hope that the partnership will wax stronger for us to have more meaningful deliverables in the nearest future. I thank our keynote speaker, guest speaker, other invited speakers, guests and participants for honouring us with your presence. I also congratulate *NANO+*, for this milestone, and state that the University is proud of your activities on nanotechnology. I invite your group to make use of the new opportunity in the University through the recently established Intellectual Property and Technology Transfer Office (IPPTO) to register and protect your innovations, and enhance their commercialization.

I thank you and I wish you a rewarding conference.

GOODWILL MESSAGES

Prof. Beatrice I.O. Ade-Omowaye

Dean, Faculty of Food and Consumer Sciences and Chairperson, Committee of Provosts and Deans, LAUTECH, Ogbomoso, Nigeria

It is with great honour and utmost pleasure that I am giving a goodwill message as the 6^{th} International Conference on Nanotechnology (HYBRID) kicks off. The Nanotechnology Research Group (*NANO*⁺) is headed by a seasoned Scientist (**Prof. Agbaje Lateef**) who recently emerged as one of the top

Scientists in his institution. Let me quickly add that members of the group are strikingly heading towards attaining the 75th percentile of the Scientists in their respective fields. Since the beginning of the research group about six years ago, the tenacity of the group in driving positive change within the country and across Africa has remained visible and undeniable. The theme: **"Nanotechnology for Socio-economic Development of Africa"** cannot be more pertinent at another time than now, considering the incumbent economic crisis bedevilling most African countries. A truth that must be told is that when African challenges are tackled by African Scientists or those living on the continent, sustainable solutions are bound to emerge. Let me commend the organizers for the wisdom displayed in the course of planning to make this conference a hybrid format. No doubt, the arrangement promises to grant a significant number of participants the privilege to participate in the conference.

Nanotechnology is an emerging technology with lots of prospects which include the development of novel products and the creation of job opportunities. A market value of about US\$1.6 trillion for goods utilising nanotechnology was reported in 2014. It was also projected that by 2030, the sector might provide 6 million employment and 10% of the global GDP. This projection shows that nanotechnology will play a critical role in the revitalization of socio-economic development in Africa. The research group has made a tremendous effort in laying a strong foundation via organization of workshops and conferences where Scientists showcase discoveries in nanoworld particularly using available nanoparticles. As we all know that a tree can not make a forest, the recent of Ladoke collaboration Akintola University Technology of (LAUTECH) Nanotechnology Research Group with the National Space Research and Development Agency (NASRDA) is a step in the right direction and I know the synergy of these two groups will yield positive and lasting results that will aid socio-economic development in the country with its ripple effects in Africa.

Although there are scores of publications in nanotechnology currently in Nigeria, the research is still at the toothing stage and I expect that this conference will define the pathways to birth products that can be patented and commercialized. I want to charge

both the Nanotechnology Research Group and NARSDA to go beyond the walls of laboratories and seek partnerships with both Small and Medium Enterprises and existing industries to harness nanotechnology-enabled products. I wish to encourage the organizer to produce a communique from this conference which should be sent to the Federal Ministry of Science, Technology and Innovation and other appropriate quarters including policymakers that will drive the visions of maximizing the potential of nanotechnology in the African continent.

I admonish the earlier entrants into nanotechnology to utilize their wealth of experience to provide the needed platforms for the tutelage of the upcoming ones so that our dear country can stand shoulder-high in the comity of African countries in nanotechnology. A privilege of attending scientific conferences that should be explored by young Scientists is finding potential collaborators and mentors. Since no one is an island of wisdom, it is expedient that all presenters of scientific papers should utilize the postpresentation comments to improve on their future conception, design and execution of research. Another prospect that this conference promises to offer is interdisciplinary research collaborations. I call upon the organizers to provide the platforms that will enable the participants to explore several opportunities for research collaborations and funding.

An outstanding feature of the Nanotechnology Research Group in the past conferences is that pertinent sub-themes and keynote addresses were assigned to experienced speakers who did justice to the topics. I am optimistic that this will not be an exception. Hence, the conference promises to be highly educative from its inception to the end. As an ardent follower of nanotechnology research at my university, the fundamentals started with biology, chemistry and physics and have now extended to other areas such as engineering and medicine. I wish to call on nanotechnology researchers to the necessity of increasing their spectrum of applications. It is my opinion that such will enlarge the application of nanotechnology and its potential in the socio-economic development of African countries. Available statistics show that China, USA and India were the three leading countries in nanotechnology publications without any African country in the top 20 in 2016. The three countries maintained their positions in 2019 with Egypt being the 19th country and the only African country that made the top 20 list. I wish to charge Nigerian Scientists to intensify their efforts to elevate the country's ranking in nanotechnology; since we have the expertise and manpower.

In conclusion, I appreciate the organizers for giving me the privilege to present this Goodwill Message and wish every conference attendee a fruitful moment at this 6th International Conference on Nanotechnology (HYBRID). I wish you all journey mercies to your respective destinations.

Thank you.

Prof. A.T.J. Ogunkunle *Dean, Faculty of Pure and Applied Sciences, LAUTECH, Ogbomoso, Nigeria*

On this auspicious occasion of the 6th international conference of Nanotechnology Research Group (*NANO*⁺) of Ladoke Akintola University of Technology, Ogbomoso, Nigeria, I offer fraternal greetings and a congratulatory message from Faculty of Pure and Applied Sciences of the University. The faculty is aware and

exceedingly proud of the plethora of achievements that LAUTECH NANO⁺, a multidisciplinary research group has recorded within the past eight years of its birth. We are particularly pleased by your leadership role in advancing the knowledge of nanotechnology, being the most prolific outfit in nanotechnology research and development in Nigeria with a turnout of more than 150 published articles within a short period of 2015 till date. Your exemplary role in promoting multi-sectoral application of nanotechnology is also noted with an array of nano-based products that have been developed by members of your group. These include but not limited to nanopaints, nanotextiles, nanopesticides, nanobiocides, nanofertilizers, nanoadsorbents, and nanofilters.

The laudable achievements enumerated above, coupled with your mentoring of students and academics in more than twenty universities and other institutions within and outside Nigeria, as well as your 'catch them young' approach of expanding the outreach of nanotechnology discourse to students of primary and secondary schools are sure ingredients to ingrain nanoscience in Nigeria sustainable development efforts. Added to our satisfaction with your attainments thus far is the gratification that this year's edition of the conference themed "Nanotechnology for Socio-economic Development of Africa" is holding outside the shores of LAUTECH, Ogbomoso, being co-hosted by the University and the National Space Research and Development Agency (NASRDA) in Abuja. This groundbreaking move is highly commendable.

While congratulating the Head and members of *LAUTECH NANO*⁺ on this unique and solemn occasion, I am urging you to keep the flag flying in order to ensure further growth and development of your group; then, the sky will not be the limit. By the same token, I wish to salute and congratulate NASRDA for partnering with the best state University in Nigeria to promote nanotechnology in Africa.

I thank you very profoundly for your patience and wish you happy and fruitful deliberations.

Prof. A.W. Ogunsola Dean, Postgraduate School, LAUTECH, Ogbomoso, Nigeria

It is my great pleasure, and I feel highly honoured as the Dean, Postgraduate school, Ladoke Akintola University of Technology, Ogbomoso to congratulate the *NANO*⁺ for another great conference of your group this year. The entire Board, staff and students of the Postgraduate school of the Ladoke Akintola University of

Technology, Ogbomoso, rejoice you for your continuous efforts, giant strides and the great accomplishments so far made in a rapidly evolving world of technological advancements.

I want to particularly commend the efforts of the conference planning committee for putting together this world-class event with the array of speakers, panelists, moderators, coordinators and discussants of the various topics, programmes and sessions of the conference. I am particularly elated by the fact that this conference brings together all the stakeholders in the Nanotechnology research field namely students, researchers, scholars, professionals, industrialists and end-users of products of experiences, Nanotechnology outputs, to share results, innovations and accomplishments, trends as well and practical challenges encountered in some situations and the solutions adopted in the field of Nanotechnology.

The theme of this year's conference: **Nanotechnology for socio-economic development in Africa** is very crucial. Indeed, it is coming at a time when our nation is going through a lot of socio-economics challenges which are begging for answers. This conference particularly will affords great minds in the field of Nanotechnology, the opportunity to exchange ideas on the challenges and issues affecting Nanotechnology development, explore higher frontiers and also come up with practical solutions to issues of health, food and nutrition security, poverty and inequality, energy crisis, insurgency, climate change towards a better earth for all of God's creations.

Arising from this great conference this year, I strongly belief we will have outputs that will constitute giant steps towards accomplishing the scientific contents of the Sustainable Developments Goals and issues that will be of great help to humanity at large in order to chart a course that will benefit Nanotechnology development, human existence and wellbeing in Nigeria and all across the globe.

In conclusion, I wish you all a fruitful deliberations, findings and recommendations that will propel the necessary innovation adoption which will positively reposition the course of human existence and the global community as you progress in the various sessions of this conference.

Thank you all and God bless you.

Prof. A.A. Akingbade Dean, Faculty of Agricultural Sciences, LAUTECH, Ogbomoso

Nanotechnology has become a vital area of study, leading evolving innovative developments in life and material sciences to answer growing human needs. Interestingly, the Nanotechnology Research Group (*NANO*⁺) of Ladoke Akintola University of Technology (LAUTECH) has made a significant contribution since its inception, with remarkable achievements in a few years

of the group's existence. Therefore, on behalf of the Faculty of Agricultural Sciences, LAUTECH, I congratulate you on this 6th international conference in conjunction with the National Space Research and Development Agency (NARSDA) titled "Nanotechnology for Socio-Economic Development for Africa". We hope that this year's conference will deliver new solutions that are safe, highly productive and affordable to further the cause of development, especially in the Agricultural sector in terms of production, processing, packaging and storing of agricultural products.

I, therefore, wish you more fruitful deliberations and continued success. Thank you.

Prof. A.I. Olugbenga-Bello *Dean, Faculty of Clinical Sciences, LAUTECH, Ogbomoso*

I felicitate with the Nanotechnology Research Group (*NANO*⁺), LAUTECH, Ogbomoso and NASADA on this 6th International Conference, tagged, "LAUTECH-NASRDA NANO 2022". The theme, "NANOTECHNOLOGY for Socio-Economic Development of Africa" cannot be more appropriate at this time that it is pertinent for us as a continent to grow our economy and improve the living standard of our people, thus responsive to the reality in Africa.

The conference being a scientific gathering of various experts with rich background in agriculture, life sciences, humanities, engineering and medical fields, shows that Africa is poised for greater exploits in advancing and promoting humanity beyond the known frontiers and Nigeria remained the pivot for the anticipated socio-economic development of our continent.

The application of nanotechnology in medicine draws on the natural scale of biological phenomena to produce precise solutions for disease prevention, screening, diagnosis

and treatment. 'Nanomedicine' is a young science, first used in the year 1990, which has a huge potential, to revolutionize medical care, widening the medical tools, knowledge and therapies currently available to clinicians. It will offer several benefits from improving the accuracy and efficacy of disease diagnostics and screening procedures to targeted drug delivery; consistent mornitoring of patients' physiological health status; regenerative medicine as well as vaccine development. Being a relatively young science however, more research is needed to consider the ethical impact of medical nanotechnology and what societal behavior might be affected by them.

NANOTECHNOLOGY will place Africa at the center point of medical tourism, and will redirect the channel of "braindrain" to "brain harvest".

I believe that every participants will gain tremendously from this year's conference and its effect shall reverberate globally.

Once again, I congratulate the organizers and wish you a fruitful deliberations.

Thank you all.

Prof. A. Adetutu

Dean, Faculty of Basic Medical Sciences, College of Health Sciences, LAUTECH, Ogbomoso

Nanotechnology provides a diverse approach to increase productivity and innovation in Basic Medical and Life Sciences. Research into Nanomedicine has created a good target for drug delivery, diagnosis and treatments.

In the light of this, LAUTECH Nanotechnology Research Group (*NANO*⁺) has been playing a strategic and key role in scientific Research and Development since her inception. Therefore, it is expected that the LAUTECH-NASRDA NANO 2022 Conference will showcase modern and new applications of Nanotechnology for national growth.

On behalf of staff and students of the Faculty of Basic Medical Sciences, I wish to extend our felicitations on the occasion of LAUTECH- NASRDA NANO 2022 Conference to be hosted in Abuja. We wish *NANO*⁺ group success in the 2022 Conference.

Thank you and God bless you all.

Prof. T. Ebijuwa *Acting Dean, Faculty of Arts and Social Sciences, LAUTECH, Ogbomoso, Nigeria*

I feel honoured and delighted for the invitation extended to me by LAUTECH NANOTECHNONOLOGY RESEARCH GROUP (*NANO*⁺) in partnership with NASRDA as a Special Guest at its conference scheduled for 22-25 November, 2022, in Abuja. First and foremost, I want to sincerely commend the concerted efforts

of the organizers of this laudable international conference with the theme: "Nanotechnology for socio-economic Development of Africa". I have no doubt that the conference whose participants have been drawn from different fields of human endeavours such as agriculture, physical sciences, environmental sciences, humanities, engineering and medicine will in no small measure focus on discussions on how Nigeria can explore nanotechnology for national development through innovative research.

Furthermore, I am of the view that the conference would afford the participants the opportunity of acquiring various techniques in nanotechnology research. In addition, it will expose them to current trends in nanotechnology research. Consequently, I wish to admonish all the participants to make judicious use of the opportunity to take part in this conference. It is my belief that we will all benefit immensely from the wealth of experience of the seasoned scholars who are to serve as resource persons at the conference. Our gathering will also afford us the opportunity of rubbing minds and exchanging ideas on the various papers relating to the theme of the conference that will be presented during the programme.

Finally, I want to use this opportunity to congratulate the organizers and wish them well as they employ nanotechnology for socio-economic development in Africa. Thank you and God bless.

PLENARY LECTURES

The race towards African socio-economic advancement requires a sustainable nano-enabled system as game changer

Dare, E.O Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria dare3160@hotmail.com

Sustainable socio-economic development would never be possible without having a strong scientific and technological basis. Nanotechnology concept has been considered as the core of the next boundless technological revolution that would stimulate national transformation through a knowledge-based economy. Sustainable nanotechnology is the development of science and technology within the 1 – 100 nanometer scale, with considerations to the long-term economic viability and a sensible use of natural resources, while minimizing negative effects to human health and the environment. Sustainable nanotechnology remains a green pathway for clean environment, poverty reduction, adequate clean water provision, e.t.c leading to socio-economic development (Figure 1). Therefore, this presentation hopes to express the possible underlining research concepts [1-4] revolving around sustainable nanotechnology vis-à-vis circular economic program for adoption towards Nigeria socio-economic development agenda.

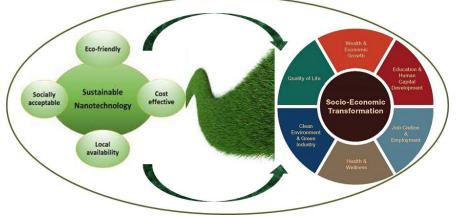


Figure 1: Roadmap to socio-economic transformation via sustainable nanotechnology

References

1. Alayande, S.; Akinlabi, A.K., Ayedun, P., Msagati, T. Dare, E.O: (2021) Recovery of crude oil from a crude oil adsorbent and simultaneous regeneraton of the adsorbent.: Registration Date: 29-03-2018. Patent Cooperation Treaty. WO 2018/055566 A1 (US Patent: 11,065,602 B2).

- 2. Dare E. O. et al (2020): A nanoemulsified system of Phytodrug for a novel transdermal treatment of type II Diabetes Mellitus. NOTAP Patent: RP-NG/P/2020/155. Cert: 004844
- 3. Enock O. Dare et al (2020): Novel Fluorescent Labeled Octasilsesquioxanes Nanohybrids as Potential Materials for Latent Fingerprinting Detection. **Chemistry - A European Journal**. <u>https://doi.org/10.1002/chem.202001908</u>
- 4. Enock O. Dare et al (2021): Latent Fingerprint Detection by Two Novel Nanohybrids based on Eight-Dansyl-Functionalized Octasilsesquioxane. Dyes and Pigment, <u>Volume 184</u>, 108841. <u>https://doi.org/10.1016/j.dyepig.2020.108841</u>

Nano-innovative materials for food security and socio-economic development

Adewuyi, S Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria

Tremendous growth in the design of new functional materials with small particle sizes and intriguing physical

and chemical properties has been recorded with the advent of nanoscience. It has also elicited numerous prospects for various applications of socio-economic impacts, vis-àvis, environmental application, catalysis, biology and most importantly in agriculture leading to food security. Generally, pathogens are responsible for crop diseases that lead to enormous losses in crop production. Interestingly, studies have shown that the combination of nanochitosan (or other polymer) templated metal nanoparticles renders a synergetic effect against broad spectrum microorganisms/pathogens with little or no toxicity issues. The polycationic nature of chitosan in acidic medium favors its antimicrobial and antifungal properties, which makes it possible to interact with the negative charges of the microbial cell membrane thereby, opening new avenues for the development of nanoformulations with improved activities. By employing green synthesis routes, our group has prepared chitosan stabilized metal nanoparticles which have been investigated against pathogens affecting post harvested fruits as well as preservations of vegetables. These new nanoagro-innovative materials can be used to preserve post harvested fruits and vegetables against pathogenic attack.

Hierarchical integration of electrospinning and 3D/4D printing process for rapid prototyping

Vaseashta, A

CEO/CTO, International Clean Water Institute, VA, USA Academician: Euro Mediterranean Academy of Arts and Sciences;

Professor, Transylvania University of Brasov, Brasov, Romania, IEEN Chaired Professor of Nanotechnology, Academy of Sciences of Moldova, Chisinau, Moldova

Electrospinning is an effective and versatile technique used to produce porous structures ranging from submicron to nanometer diameters. Using a variety of highperformance polymers and blends, several porous structure configurations have become possible for applications in tactile sensing, energy harvesting, filtration, and biomedical applications, however, the structures lack mechanical complexity, conformity, and desired three-dimensional single/multi-material constructs necessary to mimic desired structures. A simple, yet versatile, strategy is through employing digitally-controlled fabrication of shape-morphing by combining two promising technologies, viz., electrospinning and 3D printing/additive manufacturing process. Using hierarchical integration of configurations, elaborate shapes and patterns are printed on mesostructured stimuli-responsive electrospun membranes, modulating inplane and interlayer internal stresses induced by swelling/shrinkage mismatch, and thus guiding morphing behaviors of electrospun membranes to adapt to changes of the environment. Recent progress in 3D/4D printing/additive manufacturing processes includes materials and scaffold constructs for tactile and wearable sensors, filtration structures, sensors for structural health monitoring, biomedical scaffolds, tissue engineering, and optical patterning, among many other applications to support the vision of synthetically prepared material systems that mimic many of the structural aspects with digital precision. A novel technology called 3D jet writing was recently reported that catapults electrospinning to adaptive technologies for the manufacturing of scaffolds according to user-defined specifications of the shape and size of both the pores and the overall geometric footprint. This chapter reviews the hierarchical synergy between electrospinning and 3D printing as part of precision micromanufacturing for rapid prototyping of structures that are likely to evolve next-generation structures into reality.

SMART sustainable nanotechnology based strategies for nano/micro systems development for good health and well-being

Dridi, C

NANOMISENE R&D Laboratory LR16CRMN01, Center of Research on Microelectronics and Nanotechnology (CRMN) of Sousse, Technopole of Sousse, B.P334, 4054 Sahloul Sousse, TUNISIE

In our group, we have been interested on the united nations (UN) *Sustainable Development Goals* (*SDGs*) particularly the SDG3: *Good Health and wellbeing* with a focus on emerging diseases by:

1/ their prevention, based on the monitoring of emerging contaminants potentially cancerogenic ones including *nanoplastics* (Bisphenol A (BPA), phenol (Phe), hydroquinone (HQ), catechol (CC), and resorcinol (RC)), *antibiotics* (Daptomycin, Meropenem, sulfadiazine), *heavy metals* (Cu, Cr(VI),...), and *dyes* which can have severe and health chronic effects. Our strategy is based on the development of simple, cost-effective, eco-friendly and portable nanoplatforms for fast analysis of food and drinking (tap and mineral) water using nanomaterials based bio/chemical *nano/micro sensors* of these ECs;

2/ their *Prediction* & early stage diagnosis, as considered essential and highly valued by global health organizations. In this context, we present our recent achievements in the development of nanomaterials-based nano/micro sensors and biosensors for diagnosis and monitoring of emerging diseases such as,

- (i) *Cancer ones* by their early-stage warning through the detection of their *biomarkers* for example serotonin and dopamine (for breast cancer); microRNA-10b and Cr (VI) (for lung cancer) using a green synthesized AgNPs-rGO nanocomposite, graphene oxide and and μPAD strategies respectively;
- (ii) *Neurodegenerative diseases* by the detection of *Tryptophan* through an ecological and low-cost approach based on carbon black/ZnO nanocomposite;
- (iii) Viral diseases like Covid-19 by developing a strategy for a new antigenic test using lateral flow immunochromatographic assay (LFIA)³ for the detection of SARS-CoV-2 as a rapid and inexpensive population screening tool.

The application of nanotechnology for combating environmental and climatic issues

Ezema, F.I

Nano Research Group, Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria

As the globe's population and energy consumption continue to rise, the world faces tremendous difficulties. Fossil fuels and other raw resources, which are currently the primary sources of energy generation, are depleting at an alarming rate, posing serious environmental and climatic issues. To overcome the problems posed to the environment by using green design and analysis, new research, new concepts, and creative developments in the use of new technologies are required. Innovative research and fresh innovations in the application of new instruments to address the difficulties should be pursued. This is clearly a research-based, thorough, and practical study that focuses on the use of applied concepts to increase productivity and sustainability. As a result, substantial research is provided that reports on new approaches and vital applications in the disciplines of chemical and physical sciences to cope with and protect our corroding environment, as well as providing cleaner and fresher air through nanotechnology. We discuss the synthesis and characterization of perovskite and dye sensitized solar cells with a view to developing clean and cheap energy. Over 60% of the light in the visible region transmitted through the Electron transporting layer and absorption edge of PbI₂ and MAPbI₃ with optical band gap of 2.49 eV and 1.63 eV respectively. For perovskite layers deposited by spin coating and CVD, the efficiencies were calculated to be 3.61% and 12.89% respectively.

Nanotechnology for sustainable food safety

Abdulkareem, A.S

Nanotechnology Research Group, Africa Centre of Excellence on Mycotoxins and Food Safety, Federal University of Technology, Minna, Niger State, Nigeria

According to the UN, about 759 million people worldwide are malnourished, of which 30% are in sub-Saharan African region. This region ranks the second largest among the hunger region across the globe. The region also faces serious

environmental challenges, such as rivers and land contaminations by crude oil spillages. Consequences of these problems are the reduction in food, fish and agricultural products and increased levels of poverty and hunger. It has been for instance reported that the presence of multiple mycotoxins in food or animal feeds as a result of chemistry of diversity of mycotoxins has led to a growing concern over the health risk stemming from mycotoxicosis and economic development. Meanwhile, numerous strategies, such as thermal inactivation, microbial degradation, irradiation, treatment with a variety of chemicals and physical separation (adsorption) have been proposed to detoxify the mycotoxin-contaminated feedstuffs. However, these materials have some limitations which include; unspecific binding property, efficacy limited to few mycotoxins, high cost of some binding materials, adsorption of micronutrients, and high inclusion rate for vitamins and minerals. Therefore, there is need to have binders that can address some of the limitation of the present binders. To also meet up with the food requirements for the teaming population, urban agriculture is being introduced around the world, and has put severe pressure on available water resources for agricultural purposes. The indiscriminate discharge of wastewater into the environment from domestic and industries has contributed to the rise in salinity, sodicity and toxicity of irrigation water. These three parameters are considered as a major problem to irrigation water that affects the soil physical condition, soil fertility and crop yields. It is therefore important to treat the irrigation water before use. Another challenge in food industry is the correct identification of microbes and contaminated food samples for quality control and prevention of diseases. For sustainable agriculture, nanotechnology offers novel techniques that promise high-quality food, by checking food products at various levels such as food manufacturing, processing, and packaging (Fig.1). Nanoparticles have been developed with many associated benefits especially in biological systems with special focus on the antibacterial activities against pathogenic and spoilage bacteria, viruses and fungi. Nanoparticles devote several properties to food materials such as antibacterial, antiviral and antifungal properties, which have led to significant developments in food sector. This presentation will discuss the applications of nanotechnology in feed binders, effective irrigation water treatment, and development of nanofertilizer, nano food packaging and nano sensor for sustainable food safety.

Impact of graphene nanofluid on ionic polarization in reservoir sandstone under electric double layer

H. Soleimani Department of Geoscience, Universiti Teknologi Petronas 32610 Tronoh, Perak, Malaysia

The improve oil recovery (IOR) is a way of enhancing the reservoir properties with the use of nanomaterials to detach

the oil molecule from the trapped zone. The polarization effect on reservoir sandstone under electric double layer is one of the major research interests. The nanoparticles agglomeration such as graphene nanofluid due to poor dispersion in reservoir zone can be a major challenge that can lead to low reservoir permeability are well elucidated. This study investigated the influence of graphene nanofluid on the ionic polarization in under electric double layer in reservoir sandstone. Saturated Berea sandstone were used to investigate the interaction of ionic species on reservoir sandstone with the aid of Field-emission microscopy (FESEM), Energy dispersive X-ray mapping (EDX), Fourier transform infrared spectroscopy (FTIR), Raman spectral analysis and Core flooding experiment. This research gives information on the adsorption of ions within electric double layer and its polarization mechanisms. It was revealed from the experimental result that ionic polarization occurs at 10.97 GHz with 5.8 nm wavelength shift which improve the mobility of the reservoir and in turn increase oil recovery factors. Graphene nanoparticles shows a positive effect on both reservoir oil viscosity and stabilization characteristics of drilling fluids, wettability alteration, interfacial tension, and improving the emulsion.

Semiconductor nanostructures: Nanoelectrodes and nanowires recent advances in biosensors technology

Uda Hashim Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Malaysia

Semiconductor nanoelectrodes and nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometre-scale footprint comparable to subcellular

structures and biomolecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum energy consumption. This presentation will summarise recent progress in the fields of nanowire and nanoelectronics, with a primary focus primarily on silicon nanowire field-effect transistors and interdigitated electrode biosensors. First, the fabrication and integration of these devices will include the basics of nanowire FETs and IDE, which are crucial to their configuration as biosensors. Second, the presentation will focus on recent results in nanowire and IDE bioelectronics for biomedical applications ranging from label-free sensing of biomolecules to identifying specific viruses related to SARS-CoV-2 virus, *Escherichia coli*, and Parkinson Disease.

How safe are nanoparticles: analyzing data from systemic, reproductive, and cytogenetic studies in different models

Alabi, O.M Department of Biology, Federal University of Technology, Akure, Nigeria

Nanomaterials exist naturally in the environment such as dust storms, volcanic ash, and soot from forest fires or are the

incidental byproducts of combustion processes (e.g., diesel engines, welding, etc.). Thus, human beings are exposed to naturally occurring nanomaterials. The last decade has witnessed a continuous increase in the use of nanotechnology. Thousands of products varying from food, cosmetics, clothes, military equipment, and personal care products are now available with nanoparticle contents. Recently, experimental and clinical usage of nanoparticles has risen exponentially because of their diverse range of biomedical applications such as in drug delivery, cell tracking, and imaging. Due to the numerous applications of nanoparticles in consumer products, the chances of human exposure through ingestion, inhalation, and dermal contact are significantly increased. There is a growing concern about the possible adverse health effects of nanoparticles on the environment and humans. Some nanomaterials are relatively safe as compared to other nanomaterials, which are harmful. Nanoparticles may aggregate and interact in the environment in water, solids, or sediments, leading to co-exposure either via the food chain or drinkable water, which could bio-accumulate and magnify in the 'food chain cycle'. Exposure to nanoparticles may elicit novel distribution, immune responses, absorption at physiological barriers, and interaction/impairment of DNA repair processes. In general, smaller particles are thought to interact more strongly with biological systems compared to larger particles. Interestingly, some materials which are known to be inert in large quantities are in fact toxic at the nanoscale, such as gold. Nanoparticles have been shown to be mutagenic, carcinogenic, teratogenic, immunotoxic, hematotoxic, and cytotoxic in different biological systems and in vitro studies. Toxicological data have shown that nanoparticles are toxic to both somatic and germ cells. Also, it has been shown that co-exposure to nanoparticles is more toxic than individual nanoparticles. The ability of nanoparticles to damage the DNA has been suggested to be through systemic alterations. In vivo and in vitro genetic and reproductive toxicity studies of nanoparticles are very limited and the data so far reported is insufficient, hence, more experimental data are needed. Furthermore, despite the fact that humans can be exposed to a variety of nanoparticles at the same time, most studies have been limited to the toxicity of individual nanoparticles. Since the environment and humans are subjected to a complex mixture of nanoparticles, there is an urgent need for toxicological studies of co-exposure to nanoparticles, which is presently scanty in the literature. This is necessary to have a wholistic data on the biocompatibility of numerous nanoparticles in consumer products.

Drug delivery and nanoparticles: recent advances and prospects

Bakre, L.G

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Olabisi Onabanjo University, Ogun state

Drug delivery is an essential part of pharmaceutical sciences that should be taken into account early in the drug discovery and development process. A drug that cannot be delivered to its site of action is

essentially useless. In drug delivery applications, nanotechnology typically involves the creation of nanoparticles ($5 \sim 800 \text{ nm}$) that are then used to package drug molecules and genes. A number of diverse nano-sized structures have been investigated for drug formulation and delivery, including small molecule and polymeric micelles, solid lipid nanoparticles, nano-sized crystalline drug and drug-antibody conjugates, dendrimers, liposomes, lipid emulsions, and solid drug-polymer nanoparticle dispersions. Engineering of these particles has produced nanomedicines that target drugs and genes to tumors and improve the brain delivery of peptides and other molecules. These particles are also capable of promoting oral drug absorption and drug transport across other biological barriers such as the cornea and the skin. Nanomaterials provide a high degree of biocompatibility before and after conjugation to biomolecules for specific function so as to translate into nanomedicines and clinical practice. Nanomaterials provide for a favorable blood half-life and physiologic behavior with minimal off-target effects, effective clearance from the human organism, and minimal or no toxicity to healthy tissues in living organisms. Nanomaterials have been used for strategic development of new drug delivery systems and reformulation of existing drugs to enhance the effectiveness, patent protection, patient-compliance, safety of drugs and decreasing the cost of health care. Recent advances in nanodrug delivery suggest that the forthcoming generations of nano products will have target specificity, may carry multiple drugs and could potentially serve as carriers for the treatment and management of chronic diseases such as cancer, asthma, hypertension, HIV and diabetes. Currently, only a few of these nanodrugs are commercially available such as liposomes (e.g., Doxil®), low molecular weight micelles (e.g., fungizone®), and polymer-drug conjugates (Oncaspar®); but the therapeutic benefits being observed in both preclinical studies and early clinical testing suggest that more of these technologies will emerge into the patient arena in the future. A dynamic collaboration is needed within the researchers, government, pharmaceutical - biomedical companies and educational institutions all over the world in developing the nanotechnology applications in advanced medicine and patient care. Its role in the convergence of knowledge, technology and society for achieving sustainable socio-economic development cannot be overemphasized.

Nanotoxicity: are our allayed fears about toxicity of nanomaterials correct?

Elias Emeka Elemike

Department of Chemistry, College of Science, Federal University of Petroleum Resources, Effurun, Nigeria

Research in nanotechnology is expanding as different materials ranging from nanopolymers, nanometals,

nanoceramics, nanodrugs, and nanoelectronics are created and used in recent times. These materials are made from different synthetic routes including physical, chemical and biological methods. They serve great purposes as they have made life easier in modern times exhibiting fascinating properties different from microscopic materials. There are possibilities that these nanomaterials could be toxic over time resulting from the release of their constituents in nano range. Nano products made through the chemical route tend to be toxic due the nature and chemical properties of the starting materials. The biosynthesised nanoproducts may be less toxic due to the utilization of green materials in producing them. The verification of the toxicity of nanomaterials is as important as the characterization and application of these nanomaterials in order to guarantee safety and general acceptability. It is therefore pertinent to study the toxicity of nanomaterials whether it is applied in biomedicine, electronics, environmental remediation, water purification, energy and food.

ABSTRACTS OF ORAL PRESENTATIONS

Nano Plus: Science and Technology of Nanomaterials Journal home page: <u>https://www.stnanojournal.org/</u> ISSN: 2782-8166 (print) 2782-8174 (electronic)

Mathematical model on the dynamics of Covid-19 in Nigeria

Mohammed, I.A¹., Bello, F.M²., and Gwandum, G.S¹

¹Department of Mathematics and Computer, Gombe State College of Education, Billiri, Gombe State, Nigeria

²Department of General Studies, Gombe State College of Education, Billiri, Gombe State, Nigeria

*E-mail: alhajiibrahim0011@gmail.com

NANO2022/P001	Abstract
Keywords Covid-19 Equilibrium points Local stability Reproduction number	A mathematical model for the transmission dynamics of Coronavirus otherwise known as Covid-19 was developed and analysed in this work. The model was developed using a set of six ordinary differential equations: Susceptible individuals, U(t), Suspected individuals, V(t), Asymptomatic individuals, W(t), Acutely infected individuals, X(t), Quarantined individuals, Y(t) and Recovered individuals, Z(t). The aim of the study was to study the dynamics of coronavirus. The methodology employed in obtaining Covid-19 free equilibrium was linearization and stability analysis have been carried out. Basic reproduction number, R_0 was obtained which can be used to control the transmission dynamics of Covid-19. The results revealed that, Covid-19 can be eradicated by ensuring R_0 is less than one. The results of the study indicate also that when measures of curtailing the disease (as given by professionals) are strictly adhered to, Covid-19 will be wiped out.

Nano Plus: Science and Technology of Nanomaterials Journal home page: <u>https://www.stnanojournal.org/</u> ISSN: 2782-8166 (print) 2782-8174 (electronic)

Integrating nanotechnology into undergraduate education in Nigeria

Muhammad, I.D*., and Arudi. I.S

¹Department of Mechanical Engineering, University of Abuja, Abuja, Nigeria

*E-mail: d.ibrahim@uniabuja.edu.ng

NANO2022/P002 Abstract

Keywords

Nanotechnology Nanoeducation Curriculum NUC BMAS

Based on global advancements made in nanotechnology, Nigeria can be classified in the group of those demonstrating interests where activities related to nanotechnology are mainly on selective individual/group research efforts and limited conferences. One of the most significant factors for growth in the fields of nanoscience and nanotechnology is education across levels from secondary to postgraduate. In order to ascertain specific teaching level of nanotechnology in Nigerian undergraduate education, a review was conducted on 40 programmes related to pure and applied sciences as specified by the National Universities Commission (NUC) on Benchmark Minimum Academic Standards (BMAS) for undergraduate education. Results obtained from the review showed that no University in Nigeria is offering any undergraduate programme as major or minor option in Nanotechnology. Also, the only relevant full courses in the BMAS are Nanomedicine and Micro/Nano Processing Technology in Bioengineering and Mechatronics programmes respectively. In addition, it was discovered that only one specialized and a third generation university added a full course in nanotechnology in her Metallurgical and Materials Engineering programme. Thus, nanotechnology in syllabus of relevant courses is not significantly covered in majority of undergraduate programmes studied. Therefore, in order for Nigeria to move to the next level of development in nanotechnology, there is the need to develop relevant interdisciplinary engineering and science curricula for undergraduate programmes.

Biosynthesis of silver nanoparticles using aqueous *Phoenix dactylifera* L. extract-characterisation and study of water purification

Ibrahim, I1*., Hussaini, S.A²., and Muhammad, A³

¹Chemistry Unit, ²Biology Unit, Department of Natural Sciences, Gombe State College of Education, Billiri, Gombe State, Nigeria

³School of Science Education, Federal University, Kashere, Gombe State, Nigeria

Abstract

*E-mail: isaibindo12@gmail.com

NANO2022/P003

Keywords *Phoenix dactylifera* Silver nanoparticles Green synthesis

Water purification

The emerging microbial resistance and increased water pollution are of serious concerns around the globe. In order to cope with these problems, new strategies are needed to develop less toxic and more effective nanomaterials that could arrest the microbial growth and eliminate unwanted organic pollutants from water samples. In the present contribution, we report the green synthesis of silver nanoparticles using the aqueous extract of *Phoenix* dactylifera leaf. Vegetable mediated synthesis of nanoparticles is a green chemistry approach that connects nanotechnology and biotechnology. In the present investigation, we have used a fast convenient environmental friendly method for the synthesis of silver nanoparticles by biologically reducing silver ions with aqueous extract of date palm under optimum conditions (pH 10). The formation of silver nanoparticles was indicated by the colour change from colourless to brown. Biosynthesized nanoparticles were characterized by UV-Vis and FTIR analysis. The AgNPs absorbed between 350-450 nm with maximum peak occurring at 430 nm. FTIR analysis was carried out to identify the biomolecules responsible for the bioreduction which was found to be phenolic group. The synthesized AgNPs was used to purify water which showed significant changes in the boiling point, turbidity and temperature of the water when AgNPs were added.

Computational study of the effect of Fe-doping on the Young's modulus of single-walled zirconia nanotubes using finite element analysis

Muhammad, I.D*., Arudi. I.S., and Arogundade, I.I

¹Department of Mechanical Engineering, University of Abuja, Abuja, Nigeria

Abstract

*E-mail: d.ibrahim@uniabuja.edu.ng

NANO2022/P004

The effect of Fe-doping on the Young's modulus (E) of single-Keywords Zirconia nanotubes walled zirconia nanotubes (SWZNTs) with varying compositions Fe-doping were investigated using numerical simulations based on the Young's modulus Finite concept of Finite element analysis (FEA). After simulations on element analysis generated models, it was found out that there is decrease in the intensity of **E** as the % content of Fe increases, with the intensity of change dependent on the type and geometry of SWZNTs. The zigzag-type SWZNTs showed relatively higher Young's modulus with comparatively constant rate. The armchair-type displayed lower E in addition to irregular reduction depending on the quantity of dopant available. The zigzag SWZNT have higher values for E at a constant reduction rate of about 12% as the content of Fe increases from 1 to 8%; while the armchair type have lower values for E with irregular reduction between 12 to 21%. Therefore, the theoretical results obtained indicates that minimal amount of Fe nanoparticles should be added to SWZNTs during doping in order to obtain required Young's modulus for applications, such as a photo catalyst for treatment of organic pollutants.

Fabrication and characterization of green synthesized graphene nanoparticles/polymer-based counter electrodes in dye-sensitized solar cells

Awodele, M.K^{1,2*}., Oyeshola, H.O^{1*}., Ajiboye, J.O¹., Akinrinola, O¹., Adedokun, O^{1,2}., and Sanusi, Y.K^{1,2}

¹Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria ²Nanotechnology Research Group (*NANO*⁺), Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: mkawodele@lautech.edu.ng; hooyeshola@lautech.edu.ng

NANO2022/P005	Abstract
---------------	----------

Keywords	Dye-sensitized solar cells (DSSCs) are alternatives to the more
Dye-sensitized	expensive silicon solar cells since it is very cheap, and have high
Solar Cells	mechanical flexibility with excellent thermal stability. Nevertheless,
Graphene	current densities of Counter Electrode (CE) play a vital role to lower
Counter electrode	the internal energy loss in DSSCs, but the most common material on
Synthesis	CE in DSSC is platinum (Pt) However, the high cost associated with Pt is a hurdle to its commercialization. Therefore, this research
	focuses on alternative electrode materials with efficacy to replace Pt-
	based DSSCs. The sample was synthesized from the precursor of
	graphite powder with fresh castor oil (Ricinus communis) leaf as a
	reducing agent. The prepared sample was analyzed and blended with
	polyaniline (PANI) and the nanocomposite of GNPs/PANI was
	deposited onto a cleaned fluorine-doped tin oxide using spin-coating
	techniques. SEM images of the nanocomposite were spherical and
	granular in nature and the stretching and vibrational studies were
	recorded by FTIR. XRD pattern showed a wurtzite structure with an
	average grain size of 14.36 nm. The intensive absorption peak occured
	within 200-400 nm and absorbance of 1.08 a.u was recorded from UV-
	spectroscopy. The short circuit current (Isc = $1.675 \text{ mA}^{-1}\text{cm}^2$), open-
	circuit voltage (Voc = 26.30V), fill factor (FF = 50.7), percentage officient conversion (PCE = 12.08%), resistivity (a = 0.125 Qm) short
	efficient conversion (PCE = 12.08%), resistivity (ρ = 0.135 Ω m), sheet resistance (R = 0.248 Ω) and conductivity (σ = 7.41 S/m) were
	obtained for graphene/polymer-based counter electrode during
	electrical characterization. The modified graphene/polymer-based CE
	layer gives high performance compared to polymer or graphene
	nanoparticles alone. Therefore, the device can be used in DSSCs for
	improved efficiency.

Antioxidant capacity and lipid peroxidation responses of broiler chickens exposed to *Euphorbia lateriflora* synthesized silver nanoparticles

Badmus, J.A^{1*}., Alabi, T.D²., Olayeni, T.B³., Azeez, M.A⁴., Akeredolu, B.R¹., Owoade, S.A¹., Okesola, P.E¹., Adebayo, Z.O¹., Ishola, O.Q¹., and Adebayo, E.A⁴

¹Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

²Department of Biochemistry, Baze University, Abuja, FCT, Nigeria

³Department of Animal Production and Health, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

⁴Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: jabadmus@lautech.edu.ng

NANO2022/B006 Abstrac

Keywords

Silver nanoparticles *Euphorbia lateriflora* Antioxidant activity Lipid peroxidation Broiler Redox balance has been shown to be critical to the wellbeing of aerobic organisms, which when upset causes oxidative stress and eventual tissue damage. This study evaluated the influence of silver nanoparticles synthesized using Euphorbia lateriflora (AgNPs-EL) on broiler chicken redox status. A total of 100 day-old Broiler chicks (Gallus gallus domesticus) were randomly assigned to 5 treatment groups with two replicates of 10 chicks. The first group was unvaccinated control, while second control group was vaccinated.. The 3rd, 4th, and 5th groups were unvaccinated, placed on basal diet and 1%, 5% and 10% AgNPs-EL. respectively. The nanoparticles were added to the drinking water of the broiler chickens for 4 and 8 weeks as starter and finisher stages respectively. GSH, GPx, GST, SOD and lipid peroxidation were evaluated in the serum, liver and kidney. The results showed that there were no significant changes in all the parameters evaluated in the starter phase except significant reduction of liver SOD and GST in the groups exposed to 1% and 10% AgNPs-EL when compared with control-1 and -2, respectively. No significant changes were observed in GSH, GPx, GST and lipid peroxidation in finisher stage of entire tissues. However, the serum SOD activity of finisher phase was significantly up-regulated across all the groups treated with AgNPs-EL. The study showed that AgNPs-EL did not elevate levels of lipid peroxidation in all the tissues, a reflection of the mildness of the nanoparticles on the chicken redox status. The nanoparticles can therefore be explored for improved poultry production.

Impact of silver nanoparticles synthesized using *Euphorbia lateriflora* on Broiler chicks (*Gallus gallus domesticus*) growth performance and biochemical indices

Badmus, J.A¹., Olayeni, T.B^{2*}., Yekeen, T.A³., Ojewale, B.A¹., Ogunsola, D.T¹., Issa, B.F¹., Jokotade, A.O¹., Febian, H.C¹., and Aderinola, M.D¹

¹Department of Biochemistry, ²Department of Animal Production and Health, ³Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: tbolayeni@lautech.edu.ng		
NANO20)22/B007	Abstract

KeywordsThe effects of silver nanoparticles synthesized using an aqueousSilver nanoparticlesEuphorbia laterifloraBroilerand biochemical indices of broiler were evaluated in this study. ABird growthtotal of 100 broiler chicks were randomly allotted into 5 treatmentsHaematologyof two replicates of 10 chicks each. The treatments 1 and 2 servedas unvaccinated and vaccinated groups, respectively given basaldiets and drinking water ad libitum. Treatments 3, 4 and 5 wereadministered at 1, 5 and 10% AgNPs-EL in drinking water for 4weeks (starter phase) and 8 weeks (finisher phase). The final liveweight, eviscerated, bled weight, dressing percentage, carcasshematological indices, serum ALT, AST, creatinine urea, totalprotein, albumin, globulin, total cholesterol, HDL-c andtriglycerides were determined. AgNPs-EL (1 and 5%) significantly(p<0.05) increased carcass weight compared with control-2 ofstarter phase. At finisher stage; carcass, eviscerated and final liveweights of 10% AgNPs-EL were significantly (p<0.05)elevated blood platelets of both phases. No significant changesdue to the treatments were observed in serum urea, globulin,albumin and cholesterol of both phases. The AgNPs at 1%,significantly (p<0.05) lowered triglyceride level was observed in groups treatedwith 5% and 10%. AgNPs-EL at 10%, significantly lowered ASTlevel compared with oth%. AgNPs-EL at 10%, significantly lowered ASTlevel compared with oth%. AgNPs-EL at 10%, significantly lowered AST		
Euphorbia laterifloraBroilerBroilerBird growthHaematologyHaematologyand biochemical indices of broiler were evaluated in this study. A total of 100 broiler chicks were randomly allotted into 5 treatments of two replicates of 10 chicks each. The treatments 1 and 2 served as unvaccinated and vaccinated groups, respectively given basal diets and drinking water ad libitum. Treatments 3, 4 and 5 were administered at 1, 5 and 10% AgNPs-EL in drinking water for 4 weeks (starter phase) and 8 weeks (finisher phase). The final live weight, eviscerated, bled weight, dressing percentage, carcass hematological indices, serum ALT, AST, creatinine urea, total protein, albumin, globulin, total cholesterol, HDL-c and triglycerides were determined. AgNPs-EL (1 and 5%) significantly (p<0.05) increased carcass weight compared with control-2 of starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significantly (p<0.05) elevated blood platelets of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST	Keywords	The effects of silver nanoparticles synthesized using an aqueous
Broiler Bird growth Haematology Haematolog	-	extract of Euphorbia lateriflora (AgNPs-EL) on growth performance
Bird growth Haematology bird growth Haematology bird of 100 biolet chicks were faitdoning anoted into 5 treatments of two replicates of 10 chicks each. The treatments 1 and 2 served as unvaccinated and vaccinated groups, respectively given basal diets and drinking water <i>ad libitum</i> . Treatments 3, 4 and 5 were administered at 1, 5 and 10% AgNPs-EL in drinking water for 4 weeks (starter phase) and 8 weeks (finisher phase). The final live weight, eviscerated, bled weight, dressing percentage, carcass hematological indices, serum ALT, AST, creatinine urea, total protein, albumin, globulin, total cholesterol, HDL-c and triglycerides were determined. AgNPs-EL (1 and 5%) significantly (p<0.05) increased carcass weight compared with control-2 of starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		and biochemical indices of broiler were evaluated in this study. A
Haematology Haematology Haematology Haematology Haematology Haematology Haematology Haematology Haematology Haematology Haematology Haematology Haematology Haematology Haematology Haematology Haematology Haematology Hole and the treatments of the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) reduced creatinne level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		total of 100 broiler chicks were randomly allotted into 5 treatments
as unvaccinated and vaccinated groups, respectively given basal diets and drinking water <i>ad libitum</i> . Treatments 3, 4 and 5 were administered at 1, 5 and 10% AgNPs-EL in drinking water for 4 weeks (starter phase) and 8 weeks (finisher phase). The final live weight, eviscerated, bled weight, dressing percentage, carcass hematological indices, serum ALT, AST, creatinine urea, total protein, albumin, globulin, total cholesterol, HDL-c and triglycerides were determined. AgNPs-EL (1 and 5%) significantly (p<0.05) increased carcass weight compared with control-2 of starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST	ē	of two replicates of 10 chicks each. The treatments 1 and 2 served
administered at 1, 5 and 10% AgNPs-EL in drinking water for 4 weeks (starter phase) and 8 weeks (finisher phase). The final live weight, eviscerated, bled weight, dressing percentage, carcass hematological indices, serum ALT, AST, creatinine urea, total protein, albumin, globulin, total cholesterol, HDL-c and triglycerides were determined. AgNPs-EL (1 and 5%) significantly (p<0.05) increased carcass weight compared with control-2 of starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST	Haematology	as unvaccinated and vaccinated groups, respectively given basal
weeks (starter phase) and 8 weeks (finisher phase). The final live weight, eviscerated, bled weight, dressing percentage, carcass hematological indices, serum ALT, AST, creatinine urea, total protein, albumin, globulin, total cholesterol, HDL-c and triglycerides were determined. AgNPs-EL (1 and 5%) significantly (p<0.05) increased carcass weight compared with control-2 of starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		diets and drinking water ad libitum. Treatments 3, 4 and 5 were
weeks (starter phase) and 8 weeks (finisher phase). The final live weight, eviscerated, bled weight, dressing percentage, carcass hematological indices, serum ALT, AST, creatinine urea, total protein, albumin, globulin, total cholesterol, HDL-c and triglycerides were determined. AgNPs-EL (1 and 5%) significantly (p<0.05) increased carcass weight compared with control-2 of starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		administered at 1, 5 and 10% AgNPs-EL in drinking water for 4
weight, eviscerated, bled weight, dressing percentage, carcass hematological indices, serum ALT, AST, creatinine urea, total protein, albumin, globulin, total cholesterol, HDL-c and triglycerides were determined. AgNPs-EL (1 and 5%) significantly (p<0.05) increased carcass weight compared with control-2 of starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
hematological indices, serum ALT, AST, creatinine urea, total protein, albumin, globulin, total cholesterol, HDL-c and triglycerides were determined. AgNPs-EL (1 and 5%) significantly (p<0.05) increased carcass weight compared with control-2 of starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
protein, albumin, globulin, total cholesterol, HDL-c and triglycerides were determined. AgNPs-EL (1 and 5%) significantly (p<0.05) increased carcass weight compared with control-2 of starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
triglycerides were determined. AgNPs-EL (1 and 5%) significantly (p<0.05) increased carcass weight compared with control-2 of starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		0
(p<0.05) increased carcass weight compared with control-2 of starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
starter phase. At finisher stage; carcass, eviscerated and final live weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
weights of 10% AgNPs-EL were significantly (p<0.05) heavier compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
compared with control-2. AgNPs-EL (10%) significantly (p<0.05) elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
elevated blood platelets of both phases. No significant changes due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
due to the treatments were observed in serum urea, globulin, albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
albumin and cholesterol of both phases. The AgNPs at 1%, significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
significantly (p<0.05) lowered triglyceride level while significantly (p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		C C
(p<0.05) reduced creatinine level was observed in groups treated with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
with 5% and 10%. AgNPs-EL at 10%, significantly lowered AST		
level compared with other groups at starter phase. It can be		
lever compared whit outer groups at starter phase. It can be		level compared with other groups at starter phase. It can be
concluded that AgNPs-EL has potential to improve chicken		concluded that AgNPs-EL has potential to improve chicken
growth performance without distressing biochemical indices.		growth performance without distressing biochemical indices.

Phytotoxic and biomedical activities of synthesized silver nanoparticles using the seed extract of *Morinda citrifolia* (Noni)

Ibikunle, G.J¹., Akintola, A.O¹., Ayoola, P.B^{1*}., Awotoye, A.J²., Oguejiofor, C¹., and Ogunsona, S.B¹

¹Department of Science Laboratory Technology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria ²Department of Science Laboratory Technology, The Polytechnic, Ibadan, Nigeria

*E-mail: pbayoola@lautech.edu.ng

NANO2022/B008 Abstract

Keywords	The synthesis of silver nanoparticles (AgNPs) using aqueous	
Silver nanoparticles <i>Morinda citrifolia</i>	extract of noni (Morinda citrifolia) seed as the	
Phytoxicity	reducing/capping agent was investigated for its	
Anticoagulant	anticoagulant, thrombolytic and phytotoxic activities. The	
Thrombolysis	AgNPs synthesis was monitored through the colour change	
	which turned out to be light brown in colour, and then	
	further characterized using UV-Vis spectroscopy, Fourier	
transform infrared spectroscopy (FTIR), EDX and scanning		
electron microscopy (SEM). The UV-visible spectrum of the		
AgNPs displayed clear peak at 440 nm, the prominent peaks		
	of AgNPs in FTIR spectrum were 3456.55, 2360.95, 2000.25	
	and 1637.62 cm ⁻¹ which show that proteins and phenolic	
	compounds were involved in the forming and capping of the	
	AgNPs. Energy dispersive X-ray (EDX) analysis showed that	
	silver was prominent. The AgNPs at 15 µgml showed	
	anticoagulant activities of 49%, and thrombolytic activities of	
	46%. The biomedical and phytotoxic properties of the AgNPs	
	have established the medical, agricultural and economic	
	importance of the AgNPs.	

Fungi and their derivatives: versatile tools in nanotechnology

Adebayo, E.A^{1,2*}., and Oke, M.A¹

¹Microbiology and Nanobiotechnology Laboratory, Department of Pure and Applied Biology, ²Nanotechnology Research Group (*NANO*⁺), Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: eaadebayo@lautech.edu.ng

NANO2022/B009 Abstract

Keywords Silver nanoparticles Morinda citrifolia Phytoxicity Anticoagulant Thrombolysis Fungal nanotechnology has great promise and potential for developing new products with distinct diverse applications in different fields ranging from drug development to the food industry and agricultural biotechnology. The ecological friendly state of their metabolites, their safety, secretion of both intracellular and extracellular, clean and non-toxic agents have made fungi unique in nanotechnology. The diversity of several macromolecules coupled with ease of scaling up and downstream processing with the existence of fungal mycelia which sustain an increased surface area provides a leading benefit as a veritable tool for nanoparticle synthesis. Fungal nanotechnology is applied in agriculture, medical and industrial sectors for goods and services improvement and delivery to mankind. In medical sciences which remain the major area of research, fungal nanotechnology has found its application in diagnosis and treatment of diverse bacterial, fungal, protozoal, and viral diseases with efficacious vaccine development. Agriculturally, it has been applied for disease management in plants and the production of effective insecticides, and fungicides which are environmental friendly, and non-toxic in other to enhance agricultural production generally. The current study therefore explored fungal nanobiotechnology; mechanism of synthesis, characterization and potential applications in various fields of human endeavours for goods and services delivery.

Development of nano-based products from conception to commercialization: a case study of controlled released fertilizer in Malaysia

Muhammad, I.D1*., Awang, M²., and KuShaari, K³

¹Department of Mechanical Engineering, University of Abuja, Abuja, Nigeria ²Department of Mechanical Engineering, ³Department of Chemical Engineering, Universiti Teknologi, PETRONAS, Malaysia

*E-mail: d.ibrahim@uniabuja.edu.ng

NANO2022/P010 Abstract

Keywords Urea Controlled release fertilizer Nanomaterial Nanomanufacturing	More than 90% of urea produced globally is intended for use as a nitrogen-release fertilizer. Urea contains the highest nitrogen content (46%) of all solid nitrogenous fertilizers. Upon application to the soil, urea undergoes a series of biological, chemical and physical transformations to produce required nutrients to plants. There are some problems associated with the use of conventional urea fertilizers, such as wasteful dissolution, volatilizing to air as ammonia gas and absorption of nutrients by soil microbes instead of plants. Nanofertilizers are one of the options for solving problems associated to the use of urea on crops. This study summarizes all the processes used for development of a brand of
	of plants. Nanofertilizers are one of the options for solving problems associated to the use of urea on crops. This study

Influence of Perovskite thickness on the performance of silver-doped NaZnBr₃ Perovskite solar cells using SCAPS software

Abdulmalik, M.O^{1*}., and Danladi, E²

¹Department of Physics, Confluence University of Science and Technology, Osara, Nigeria ²Department of Physics, Federal University of Health Sciences, Otukpo, Nigeria

NANO2022/P011 Abstract

Keywords SCAPS 1-D Perovskite solar cells Absorbing layer Power conversion efficiency (PCE) Current density The absorbing layer thickness is a crucial parameter that significantly impacts the performance of perovskite solar cells (PSCs). In this study, we investigated the influence of the thickness of the absorbing layer on the performance of silver-doped NaZnBr₃ perovskite solar cells using the one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. The absorbing layer was varied in the range of 100 nm to 1300 nm of thickness. The initial solar cell parameters of the device upon simulation were a 1.174 V, 14.012 mAcm⁻², 79.649%, 13.101% values for open circuit voltage (Voc), short circuit current density (Jsc), Fill Factor (FF), and Power Conversion Efficiency (PCE) respectively. Implementing the optimised perovskite layer thickness value of 1000 nm, appreciable values of solar cell parameters were obtained with a Voc of 1.197 V, Jsc of 18.184 mAcm-2, FF of 79.110%, and PCE of 17.215%. A 31% and 30% increase were observed in PCE and Jsc respectively when the optimised and initial results of the device were compared. This confirms the premise of excellent photon management and enhanced PSCs performance when selecting the thickness of the absorbing layer.

In-vitro anti-hypertensive, anti-oxidant and antifungal properties of synthesized gold nanoarticles from *Strophanthus hispidus* leaf aqueous extract

Oladipo, I.C^{1*}., Lateef, A²., Azeez, M.A²., Asafa, T.B³., Yekeen, T.A²., and Ogunsona, S.B¹

¹Department of Science Laboratory Technology, ²Department of Pure and Applied Biology, ³Department of Mechanical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

NANO2022/B012 Abstract

Keywords AuNPs Strophantus hispidus Antioxidant Antifungal Anti-hypertensive Lipid peroxidation

This dispensation has recorded lot of sudden deaths and health complications resulting from high blood pressure and oxidative stress than necessary. This study describes the green synthesis, characterization and some biomedical application of gold nanoparticles synthesized using aqueous leaf extract of Strophantus hispidus. The phytosynthesized AuNPs showed an irregular morphology with smooth outer surface on the SEM micrograph. Gold was the most occurring metal noted on EDX analysis. The UV-visible spectrum of the AuNPs synthesized displayed clear peak at 552 nm. The FTIR showed prominent peaks at 3417.98, 2359.02, 1622.19 and 1384.94 cm⁻¹ attributed to the involvement of proteins in the AuNPs biofabrication and capping. The AuNPs showed potent antifungal activity through inhibitions of mycelia by 72.5, 82.7, 70.1, 87.6 and 51.8 % against Fusarium solani, Fusarium poae, Aspergillus niger, Aspergillus flavus and Penicillium avetonatum respectively at 150µl/ml. The AuNPs synthesized showed free radical scavenging properties of 80.75-89.34% at 50-200 µl/ml against DPPH. Furthermore, gold nanoparticles inhibited rat liver mitochondria lipid peroxidation by 44.37-96.84% at $50-200 \mu$ l/ml. The AuNPs showed a significant Angiotensin converting enzyme (ACE) inhibitory activities. Gold nanoparticles showed ACE inhibitory activities of 60.88±3.1000, 42.98±0.4755, 37.80±0.1077 and 36.66±0.444% at 50, 100, 150, and 200µg/ml respectively. It has been established in this research work that the green synthesis of AuNPs from *Strophantus hispidus* leaf possess anti-hypertensive, free radical scavenging and mycelial inhibitory activities; feats that could be exploited deeply in fixing bio-medical and agro-based challenges in this dispensation.

Characterization and biomedical applications of titanium dioxide nanoparticles synthesized from *Lecaniodiscus cupanioides* leaf extract

Oladipo, I.C^{1*}., Lateef, A²., Azeez, M.A²., Asafa, T.B³., Yekeen, T.A²., and Ogunsona, S.B¹

¹Department of Science Laboratory Technology, ²Department of Pure and Applied Biology, ³Department of Mechanical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Keywords	The phyto-fabrication of titanium dioxide nanoparticles (TiO ₂ NPs)	
TiO ₂ NPs	using the leaf aqueous extract of a folk medicinal plant	
Lecaniodiscus cupanioides	Lecaniodiscus cupanioides was investigated in this work. The	
Antioxidant	TiO ₂ NPs was evaluated for its antifungal, antioxidant,	
Antifungal	anticoagulant and thrombolytic activities. The characterization	
Anticoagulant	showed that the UV-visible spectrum of the TiO ₂ NPs synthesized	
Thrombolytic	displayed clear peak at 374.0 nm, also the FTIR spectrum peaks	
,	were obtained at 3849, 3468, 3376, 2904, 2643, 2414, 1895, 1896,	
	1602, 1369, 1091and 696 cm ⁻¹ . The SEM micrograph showed that	
	the shapes of TiO ₂ NPs were nearly spherical, and agglomerated in	
	nature with sizes range of 21.74-57.0 nm. Energy dispersive X-ray	
	(EDX) analysis showed that titanium was the prominent meta	
	present, while the selected area electron diffraction pattern	
	conformed to the face-centred crystalline nature of TiO ₂ NPs. The	
	TiO ₂ NPs showed potent mycelial inhibititory activities against	
	Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus and	
peroxidation at 10μ /ml by 52.27-95.85% at 20-60 μ l/ml. TiO ₂ NPs showed anticoagulant activity of 97.6% at 75 μ g/ml thrombolytic activities of 35.2-89.3% at 30-75 μ g/ml. Conclusiv this study has presented a green approach to the synthesis TiO ₂ NPs from the leaf of <i>Lecaniodiscus cupanioides</i> and biomedical feats that could be employed in drug formulations		
	•	
		include free radical scavenging, surgical, and hematological
		processes to mention a few.

*E-mail: icoladipo@lautech.edu.ng NANO2022/B013 Abstract

Characterization and biomedical applications of titanium dioxide nanoparticles synthesized from *Datura stramonium* seed extract

Oladipo, I.C^{1*}., Lateef, A²., Azeez, M.A²., Asafa, T.B³., Yekeen, T.A²., Ogunsona, S.B¹., and Adewoyin, A.G¹

¹Department of Science Laboratory Technology, ²Department of Pure and Applied Biology, ³Department of Mechanical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: icoladipo@lautech.edu.ng	
-----------------------------------	--

Keywords	The biosynthesis of titanium dioxide nanoparticles (TiO ₂ NPs)	
TiO ₂ NPs	using extract of Datura stramonium seed was investigated in this	
Datura stramonium	work. The TiO ₂ NPs were nearly spherical, and agglomerated in	
Antioxidant	nature with size of 75.88-155.52 nm. Energy dispersive X-ray	
Antifungal	(EDX) analysis showed that titanium (Ti) was the prominent metal	
Anticoagulant	present, while the selected area electron diffraction pattern	
Thrombolysis	conformed to the face-centred crystalline nature of TiO ₂ . The UV-	
Lipid peroxidation	visible spectrum of the TiO2NPs synthesized displayed clear peak	
1 1	at 454.0 nm. The prominent FTIR peaks obtained at 3636, 3400,	
	3235, 2902, 2357, 1640, 1421, and 1062 cm ⁻¹ alluded to the fact that	
	proteins were involved in the biofabrication and capping of TiO ₂ .	
	The TiO ₂ NPs synthesized showed potent antifungal activities	
	through mycelial inhibitions of 77.5, 62.5, 79.0 and 52.5% against F .	
	solani, A. niger A. flavus and A. fumigatus at 250µg/ml respectively.	
	The TiO ₂ NPs synthesized showed great free radical scavenging	
	properties of 59.27, 57.92, 61.95, 70.99% against 2,2-diphenyl-1-	
	picrylhydrazyl at 10, 20, 40 and 60 μ l/ml respectively.	
Furthermore, the synthesized TiO ₂ NPs also inhibited lip peroxidation at 10 μ l/ml (29.94%), 20 μ l/ml (32.91%), 40 μ l/s (47.63%) and 60 μ l/ml (84.88%). The TiO ₂ NPs prevent coagulation of blood at 30 μ g/ml by 53.4%, 45 μ g/ml by 58.7%, μ g/ml by 76.3% and 75 μ g/ml by 97.3% and lysis of blood clot 30 μ g/ml by 48.3%, 45 μ g/ml by 68.5%, 60 μ g/ml by 80.4% and μ g/ml by 94.9%, thus, showing potential biomedical application This study has presented an eco-friendly and economical synthes		
	0 <i>i</i> ii	
		of TiO ₂ NPs from <i>Datura stramonium</i> husk for various
		nanobiotechnological applications.

NANO2022/B014 Abstract

An analysis of buoyancy-driven flow and heat exchange in a cylindrical channel filled with a water–Cu nanofluid

Sangotayo, E.O*., and Ogidiga, J.O

Department of Mechanical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: eosangotayo@lautech.edu.ng

NANO2022/P015 Abstract

Keywords Natural convection Nanofluid Finite difference method Cylindrical cavity Buoyancy parameter Fluid stream and heat exchange qualities by natural convection within an enclosure have gained a lot of attention because of the numerous manufacturing applications. The density-buoyancy analysis is crucial in the technical design of floating vessels. This study explores quantitatively the effect of buoyancy factors on natural convection in a heated Cu nanofluid-filled cylinder. The governing equations were discretized using the finite difference method, and continuity and Navier Stoke fields were integrated using the C++ computer language. The particle sizes of the Cu nanoparticles investigated in this study ranged from 1% to 10%, and buoyancy parameters were in the range of $2.6 - 2.8 \times 10^3$. The results are presented as Nusselt number, temperature gradient, vorticity, and stream function curves utilizing Cu nanofluids as working fluids. The results showed that increasing the volume fraction of nanoparticles to 0.04 increases the buoyancy parameters to a maximum of 2.76×10^3 , resulting in a significant increase in the convective heat transmission rate. Furthermore, when the buoyancy factor grows, the temperature gradient, vorticity, and stream function of the nanofluid improve while the local drag coefficient drops. This research enhances the understanding of buoyancy-driven convective flow and heat behavior of boundary layer problems; for safety and effectiveness, as engineers examine the response of floating vessels like ships and oil rigs to increasing weight.

Biosynthesis of silver nanoparticles from agro-waste (corncob) and its antibacterial effect in water treatment

Mohammed, M.O., Suleiman, M.M., Yusuf, T.B*., Aderinkola, T.A., Abubakar, A.A., Oladuntoye, M.T., and Ola-Williams, I

Department of Biological Sciences, Summit University, Offa, Nigeria

*E-mail: yusuftoyyib5@gmail.com

NANO2022/B016 Abstract

Keywords Silver nanoparticles Corncob Green synthesis Water treatment Polyurethane

As the reoccurrence of water pollution emerges worldwide, the use of conventional treatment method of polluted water is proven to be less effective. However, the use of nanoparticles due to their large surface area and particle size is said to have a wide variety of application in which water treatment is one of them. Nanoparticle synthesis using agrowastes is not only cost effective and ecofriendly but also indirectly reduces the menace of environmental pollution. In this study, the green synthesis of silver nanoparticles using agro-waste (corncob) extract was carried out and evaluated for antibacterial activity towards water treatment. The synthesis of silver nanoparticles was monitored using UV-vis spectrophotometer. The synthesized nanoparticles were embedded on Polyurethane foams for 5 h, washed with distilled water and air dried. A loop-full of *Escherichia coli* and Shigella spp isolated from Afelele river was inoculated and homogenized in a distilled water before inserting the embedded PU-foams. One ml from the setup was taken and incubated at several intervals (0 min, 30 min, 1 h, 8 h and 24 h) to observe antibacterial activity. Results (cfu/ml) obtained after the incubation period shows little effect at 0 min (8.0×10^6) , 30 min (7.0) \times 10%) and 1 h (6.0 \times 10%) after plating out while at 8 h and 24 h, no growth was noticed on the plates indicating the complete inhibition of the isolates. In conclusion, this study reveals the applicability of agro-waste in nano-synthesis and the efficacy the embedded PU-foams in water treatment as evident in the inhibition of the selected microorganisms.

Fabrication, characterization and applications of multiwall-carbon nanotubes-Al₂O₃ ceramic composites

Adewumi, H.K^{*}., Ayodele, A.J., Oyeshola, H.O^{*}., Adewumi, A.S., Sanusi, Y.K., and Fajinmi, G.R

Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: hkadewumi@lautech.edu.ng, hooyeshola@lautech.edu.ng

Keywords Dielectric substrate materials with light weight, electromagnetic **MWCNTs** compatibility, frequency-dependent permittivity and permeability, Al_2O_3 good microwave absorptiveness, extremely low dielectric and Ceramic composite magnetic losses, and broad bandwidth have become essential Bulk conductivity requirements in today's world due to advancements in electronic Electronic devices and wireless communication technology. Hence, the extraordinary characteristics, specific properties and potentials of carbon nanotubes (CNTs) in formation of composite substrate materials which are useful in the design of broadband absorbing or functional materials at higher microwave frequency has been underutilized. Therefore, this paper presents the results and suitable area of applications of multiwall carbon nanotubes -Al₂O₃ ceramic composites (MWCNTs-Al₂O₃) that were fabricated synthetically. The multiwall carbon nanotube was synthesized at different temperatures using chemical vapor deposition techniques and then used to doped five different samples of Al₂O₃ to form composite samples. The composites samples obtained were further characterized to realize some properties such as relative permittivity, relative permeability, microwave absorptiveness, bulk conductivity, dielectric loss tangent and magnetic loss tangent. The properties obtained show that the composite materials formed can be suitably used as microwave absorber, electromagnetic compatibility devices, insulator, ferromagnetic devices, capacitor and patch antenna substrate which are essential components of solid state electronic devices.

Bio-fabrication of silver nanoparticles from *Azanza garckeana* seed extract: A promising alternative to conventional antibiotic therapy against Vancomycin-resistant *Enterococci*

Yusuf-Omoloye, N.A¹., Azeez, L.A²., Adeyemi, F.M¹., Sule, W.F¹., Ajigbewu, H.O¹., and Adegbite-Badmus, M.K¹

¹Department of Microbiology, ²Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria

*E-mail: nana.yusuf@pgc.uniosun.edu.ng

NANO2022/B018 Abstract

Keywords Silver nanoparticles Green synthesis Azanza garckeana Vancomycin-resistant Enterococci Antibacterial activity Globally, Vancomycin-resistant Enterococci (VRE) has become a major concern and a primary cause of nosocomial infections. Their multiple resistance to various antibiotics particularly vancomycin has become a major clinical and epidemiological issue. Azanza garckeana, also known as the African Snot Apple is widely known for its medicinal properties but is one of the least-exploited indigenous wild fruit of interest in Africa. The present study aimed to synthesize silver nanoparticles (AgNPs) from the seed extracts of Azanza garckeana, and screen for possible antibacterial activity against VRE isolates. AgNPs were synthesized using the eco-friendly biological method by mixing the Azanza garckeana seed extract in a silver nitrate solution. The particles were then later characterized using UV-Vis spectroscopy and FTIR. The antimicrobial activity of the AgNPs was evaluated for their inhibitory potential against VRE isolates from clinical, food, and water sources using the Kirby-Bauer well diffusion method. The results obtained from UV spectroscopy showed a clear parabolic shape at 435 nm, and FTIR analysis showed various peaks implying that A. garckeana had polyphenolic compounds responsible for the capping and stabilizing of the silver nanoparticles. The synthesized AgNPs also exhibited antibacterial activity against the VRE isolates with inhibition zones between 10-16 mm. The green synthesized AgNPs revealed potent antimicrobial activity; thus, the antibacterial activity of the synthesized AgNPs from Azanza garckeana seed extract could be explored further and employed in several biomedical applications.

Development and stability studies of diosgenin-integrated *oil-in-water* nanoemulsified system for its potential drug delivery application

Akinsipo, O.B1*., Dare, E.O2., Oladoyinbo, F.O2., Katare, D.P3., and Sanni, L.O4

¹Department of Chemical Sciences, Tai Solarin University of Education, Ijagun, Nigeria

²Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria

³Centre for Medical Biotechnology, Amity University, Noida, India

⁴Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria

*E-mail: solape2010@gmail.com

NANO2022/B019 Abstract

Bioavailability and protection of poorly water-soluble phyto-drugs Keywords Diosgenin can be enhanced when encompassed in a nanoemulsion system, Nanoemulsion hence, impelling its drug delivery application. This study aims at Drug delivery uniquely incorporating diosgenin (DG) into an oil-in-water (O/W)Stability sub-micron-sized nanoemulsion (NE) capable of enhancing its stability for therapeutic drug delivery purposes. The low-energy phase inversion composition method was used in formulating diosgenin-incorporated O/W nanoemulsion (DGNe). The characteristic surface morphology of DGNe was determined using Scanning Electron Microscope (SEM) and Field Emission Scanning Differential Light Scanning Calorimeter Electron Microscope. (DLS) was employed in investigating the particle size, zeta potential, and polydispersity index (PDI) of DGNe. The functional stability of the formulated DGNe was characterized using Fourier Transform Infrared (FTIR), DLS techniques including physical and thermodynamic studies. SEM revealed an almost spherical nanoemulsion matrix of the dispersed diosgenin. The DLS indicated particles of 92-265 nm with a PDI of 0.01-0.40. Meanwhile, the FTIR showed a stable DGNe formulation at days 0 and 90. DGNe were also found to be thermodynamically stable at 4 and 25 °C after 4 weeks. The viscosity of DGNe revealed a decrease with increasing water content. In-vitro drug release studies indicated a slow, continuous, and sustained release of drug from 0.5 to 15 h period.

Recent advances of biotechnological approaches in nanotechnology: applications and limitations

Alabi, T.D^{1*}., and Badmus, J.A²

¹Department of Biochemistry, Baze University, Abuja, Nigeria ²Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: toyudoc@yahoo.com

NANO2022/B020 Abstract

Nanotechnology Biotechnology Nanobiotechnology Nanoparticles Biomedical Nanotechnology have been extensively researched and its applications introduced in almost all fields and disciplines. Of much interest is its utmost use and applications in biomedical and biochemical sciences that includes bio-detection, drug delivery and diagnoses for disease management and prevention. However, there is a growing interest towards the expansion of nanobiotechnological tools. Besides the immense contribution of organic chemistry to nanotechnology, biotechnology now provides interesting tools for the synthesis of new polymeric nanoparticles. In this review, we discuss the emerging uses of biotechnology techniques and tools in nanotechnology. The significance of such biotechnological tools as genetic engineering of microorganisms for wound healing, drug delivery and overcoming multi-drug resistant infections will be discussed. This review presents an overview of the recent advances of biotechnological approaches in nanotechnology, alongside the respective limitations observed in the investigations and studies analyzed. For that purpose, we have compiled a list of selected articles from an extensive search in main scientific databases such as PubMed, Science Direct[®] (Elsevier) Web of Science[™], and SCOPUS® using a combination of different keywords, such as "nanoparticles", "nanotechnology", "biotechnology", "antimicrobial", "resistant", "bacteria", "polymers" and complementary terms that might be useful to the study.

Antimicrobial susceptibility pattern of *Enterococcus* isolated from oral and rectal cavity of *Sus scrofa domestica* (domestic pig)

Ngwu, M.I^{*}., Ozota, G.O., Emencheta, S., and Ozioko, C.A

Department of Pharmaceutical Microbiology, University of Nigeria, Nsukka, Nigeria

*E-mail: maria.ngwu@unn.edu.ng

NANO2022/B021 Abstract

Keywords
Enterococci
Vancomycin-resistance
Domestic pig
Susceptibility testing

Among food animals, there has been frequent occurrences of resistant enterococci and they may be reservoirs of resistant enterococci that can be transferred to humans through the food chain. The aim of this study was to isolate and determine the antimicrobial susceptibility pattern of Enterococcus isolated from the oral and rectal cavity of pig obtained from farm in Nsukka. Oral and rectal samples of domestic pig were collected using swab stick. The specimens were inoculated onto the sterile nutrient broth containing 6.5% normal saline, these were then incubated for 24 h. After the incubation they were sub-cultured aseptically onto a sterile Slanetz and Bartley agar. This was incubated for 24 h. After purification, the organisms were cultured on Bile-Esculin agar for confirmation of the Enterococcus. Antibiotic susceptibility profile was performed using disc diffusion method according to Clinical Laboratory Standard Institute (CLSI), using Mueller-Hinton agar. A total of 304 oral and rectal samples were obtained and 116 organisms were isolated. The susceptibility result showed that 66.4% were resistant to vancomycin, 41.1% to erythromycin, 51.7% to linezolid and 23.3% to teicoplanin. There was high level of vancomycin resistant enterococcus (VRE) strain in pigs in this study which calls for effective environmental and antimicrobial monitoring. We advanced that nanoparticles can be exploited to curtail the emerging antibiotic resistance in enterococci.

Development of copper polymer based grown nanocomposite thin film for photovoltaic application

Oyeshola, H.O^{1*}., Atere, D.A¹., Ojeniyi, F.A¹., Lawal, M.A¹., Atanda, O.S¹., Adejumo, B.K¹., Raheem, K.K¹., Alamu, Q.A¹., Adewumi, H.K¹., and Sanusi, Y.K^{1,2}

¹Department of Pure and Applied Physics, ²Nanotechnology Research Group (*NANO*⁺), Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: hooyeshola@lautech.edu.ng

NANO2022/P022	Abstract
Keywords	Today, there is an increase in the level of material in organic-based
CuNPs	solar cells (OSCs) as an alternative energy source. The polymer
Organic solar cells	such as P3HT:PCBM and polyaniline (PANI) layers exhibit
Photovoltaic efficiency	excellent photovoltaic properties yet their power conversion
Nanocomposite	efficiency are still low compared to that of convectional silicon
Nanocomposite Thin film	photovoltaic cells. Therefore, there is need to improve the photovoltaic efficiency of this polymer by incorporation of high metal as a hole collector buffer layer. This research focused on incorporation of green copper nanoparticles (CuNPs) into polymer (PANI) to form a composite for active layer device to improve the overall efficiency of OSCs. Green synthesized CuNPs were obtained from precursor of copper-sulphate. Copper-polymer nanocomposite thin film was deposited onto a cleaned glass substrate (ITO) using spin coating techniques to form composite active layer device. Optical and electrical properties of the developed copper-polymer composite-based active layer device were investigated using UV-VIS spectrophotometer, AFM and four-probe technique. There was tendency of agglomeration due to incorporation of copper metal in the polymer matrix as observed from SEM. FTIR revealed that carboxyl (C=O), hydroxyl (-OH) and amine (NH) groups and XRD shows diffraction pattern which confirms the standard peak of CuNPs. AFM shows interaction between Cu and polymer and the absorption spectrum show shift in the absorption peak. The photovoltaic properties of
	the copper-polymer composite-based active layer gives better
	performance compared to the polymer only active layer; composite active layer gives Isc of 1.565 mAcm ⁻² , Voc of 26.30 V,
	Fill Factor of 29.36%, Efficiency of 12.991%. The developed
	nanocomposite device provides conduction pathways for an
	improved charge transferability which might be a good candidate
	as whole collector electrode in thin film OSCs.

Green synthesised silver nanoparticles and their potential as cement admixtures

Yahaya, M.I., and Tambari, M.S

Department of Pure and Industrial Chemistry, Sokoto State University, Sokoto, Nigeria

*E-mail: ymansur64@gmail.com

NANO2022/P023 Abstract

Keywords Cement Silver nanoparticles Cement admixture Compressive strength Construction industry The construction industry is faced with alarming cement scarcity and poor alternate cement admixture coupled with the current market lack of long term application and cheaper admixture that would promote cement production. In order to overcome these issues, a suitable synthesis that can serve a better function is needed. The green synthesis of nanoparticles provides a convenient, simple and environment friendly way which minimizes the side effects of chemical and physical methods by preventing the use of toxic chemicals and formation of harmful byproducts and at the same time enhance the durability, workability, or strength characteristics of concrete and a better cement production. This have become a very promising research in the field of nanoscience in recent years. As such, silver nanoparticle produced from plant extracts can be considered as one of the prominent agents which will be able to perform a wide spectrum potential as cement admixture. In this research, silver nanoparticles synthesized from plant extract were characterized and their potential as cement admixture investigated. An increase in UV-Vis absorbance in the region 340 to 450 nm with time indicated the synthesis of silver nanobio conjugates. The FTIR peak at approximately 3200 cm⁻¹ indicated the reduction of Ag+ into silver nanoparticles. The SEM morphology of the silver nanoparticles is pre-dominantly spherical. There was an increase in the setting time when the mixture of cement and silver nanoparticles was above 3.0wt%. The sample mixture shows an increase in compressive strength after 48 h. The results indicate the possibility of using silver nanoparticles as cement admixture.

Green synthesis of silver nanoparticles using *Sarcocephalus latifolius* root aqueous extract for biomedical application

Adewoyin, A.G*., Oladipo, I.C., Akintola, A.O., Oyeniyi, O.D., Oke J.V., and Afolabi, S.T

Department of Science Laboratory Technology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: agadewoyin@lautech.edu.ng

NANO2022/B024 Abstract

Keywords Silver nanoparticles were synthesized by using aqueous root Silver nanoparticles extract of Sarcocephalus latifolius in this study. The nanoparticles Sarcocephalus latifolius were characterized by UV-Visible spectroscopy, Fourier transform Antioxidant activity infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM) Malondialdehyde activity and Energy dispersive X-ray (EDX). The antioxidant activity of the Angiotensin-converting biosynthesized nanoparticles was determined using 2,2-diphenylenzyme (ACE) inhibiting 1-picrylhydrazyl (DPPH) and nitric oxide radical scavenging activity assays. The malondialdehyde activity and angiotensin-converting enzyme (ACE) inhibiting activity of the synthesized nanoparticles were also determined. The surface plasmon resonance found at 450 nm confirmed the formation of AgNPs and FTIR spectra obtained confirmed the involvement of biological molecules, while SEM analysis confirmed the formation of distinct spherical silver nanoparticles. The biosynthesized nanoparticles showed increase in radical scavenging activity with increase in concentration in comparison to the standard used. Effective inhibition of ACE was observed which was dose dependent. This study suggested that AgNPs synthesized from aqueous Sarcocephalus latifolius root extract have the potential of being exploited in the treatment of stress related issues.

Comparative study of inhibition potentials of gold-silver alloy nanoparticles on mild steel in 3.5% NaCl and 1.0 M HCl solutions

Asafa, T.B^{1*}., Odusote, J.K²., Ogbesanya, V.O., Opatola, E.A²., Lateef, A¹., Durowoju, M.O¹., Azeez, M.A¹., Yekeen, T.A¹., Oladipo, I.C¹., Adebayo, E.A¹., Badmus, J.A¹., Sanusi, Y.K¹., and Adedokun, O¹

¹Nanotechnology Research Group (NANO⁺), Ladoke Akintola University of Technology, Ogbomoso, Nigeria

²Department of Materials and Metallurgical Engineering, University of Ilorin, Ilorin, Nigeria

*E-mail: tbasafa@lautech.edu.ng

NANO2022/P025 Abstract

Keywords	Monolithic metallic nanoparticles have been deployed to minimize
Gold-silver alloy	corrosion of metals in marine and other corrosive environments.
nanoparticles	However, the inhibition efficiency is usually below 55% for mild
Mild steel	steel immersed in 3.5% NaCl and 1.0M HCl solutions. One way of
Corossion inhibition	raising the efficiency is to make use of alloy nanoparticles, a
Gravimetry	hybrid of two metallic nanoparticles, which are known to perform
Potentiodynamic	better in other applications. In this study, a comparative analysis
polarization	of the inhibition potential of gold-silver nanoparticles (Au-AgNPs)
polarization	on mild steel immersed in two corrosive media (3.5% NaCl and 1.0
	M HCl) was conducted. Au-AgNPs were obtained from
	Laboratory of Industrial Microbiology and Nanobiotechnology,
	LAUTECH Ogbomoso while the corrosive media were prepared
	as required. The selection of the media was premised on their
	diverse use as operating media and cleaning agents in
	petrochemical industries. Five concentrations of Au-AgNPs
	solution (0, 5, 10, 15, and 20 μ g/ml) were added to each of 3.5%
	NaCl and 1.0 M HCl solutions. Two approaches (gravimetric and
	potentiodynamic polarization) were deployed to evaluate the
	corrosion inhibition effects of Au-AgNPs solution on the mild steel
	samples. The gravimetric study was conducted for 360 h of
	exposure in NaCl and 240 h in HCl. Results showed that weight
	loss increased with exposure time but decreased with increased
	concentration of Au-AgNPs solution for both corrosion media. In
	addition, inhibition efficiency was enhanced by 75% for NaCl and
	70% for HCl which are both higher than 52% obtained when
	AgNPs were used. The potentiodynamic polarization results
	showed that Au-AgNPs modified the mechanism of anodic
	dissolution and cathodic hydrogen gas evolution. SEM images
	confirmed uniform corrosion on the surfaces of the samples.

Synthesis and effects of sunflower-mediated calcium phosphate nanoparticles on physical and sensory properties of broiler chicken

Ola, A.K^{1*}., Ojebiyi, O.O¹., Akinwumi, A.O¹., Lateef, A²., Sanu D.O¹., Oladeji H.O¹., and Fajimolu, O.M¹

¹Department of Animal Nutrition and Biotechnology, ²Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

NANO2022/B026 Abstract

Keywords The need for maintaining a balance in the use of calcium and phosphorus in animal feed cannot be overemphasized sequel to Calcium phosphate greater requirement for chicken in relation to food products. This nanoparticles experiment was conducted to synthesize and evaluate the effect of Sunflower sunflower-mediated calcium phosphate nanoparticles (CaP-NPs) Broiler on physical and sensory properties of broiler chickens. Harvested Sensory properties sunflower leaves were washed, dried and ground into powder Physical properties, form and then extracted with water at 60 °C for 1 h. The leaf Hedonic scale extract was used to reduce calcium phosphate $(Ca_3 (PO_4)_2)$ to CaP-NPs which was fed to 200 day old Arbor acres strains of broiler chicken at 0, 0.01, 0.03, 0.05 and 0.07% inclusion level for seven weeks. At the end of the feeding trial, four birds per treatment were slaughtered and dressed for physical and sensory properties evaluation. The chilling and cooking losses were significantly (p<0.05) influenced across all treatments showing improved values with birds fed 0.07% CaP-NPs. Cold shortening, drip loss, pH and thermal loss were not significantly (p>00.5) influenced across all treatments. Though, lowest numerical values were recorded for the birds fed 0.01% and 0.07% CaP-NPs showing positive influence of the diet. Colour, flavour and overall acceptability were not significantly (p>0.05) influenced across all treatments while juiciness and tenderness were significantly (p<0.05) influenced across all treatments. Birds fed 0.03, 0.05 and 0.07% CaP-NPs had highest values in line with hedonic scale used. Birds fed 0.01 and 0.07% CaP-NPs had lowest values for cold shortening, drip loss, pH and chilling loss, cooking loss, thermal loss. Therefore, inclusion of CaP-NPs in broiler diet can improve its meat quality.

Preparation and pigmentation of carbon nanotubes for biomedical application

Uselegh, L.Y^{1,3*}., Tijani, J.O^{1,3}., Alex Ikechukwu Ajai, A.I^{2,3}., and Abdulkareem, A.S^{2,3} ¹Department of Chemistry, ²Department of Chemical Engineering, ³Nanotechnology Research Group, African Centre of Excellence on Mycotoxin and Food Safety, Federal University of Technology, Bosso Campus, Minna, Nigeria

*E-mail: useleghlynd@gmail.com

ct
1

Keywords	In this study, the produced bimetallic catalyst (Fe-Ni supported on
Pigmentation	kaolin) was used to synthesis carbon nanotubes (CNTs) via
Carbon nanotube	chemical vapour deposition method. The produced CNTs was
Red oxide	purified using acid mixtures (H_2SO_4/HNO_3) while the
Yellow oxide	pigmentation of purified CNTs was carried out by Red oxide (RO)
Polymeric prosthetic feet	and Yellow oxide (YO) respectively at different proportions with
	the CNTs. The pigmented CNTs were characterized using Ultra
	Violet-visible spectroscopy, High-resolution transmission electron
	microscopy (HRTEM), high-resolution scanning electron
	microscopy (HRSEM) coupled with energy dispersive
	spectroscopy (EDS), and X-ray diffraction spectroscopy (XRD).
	The UV-visible spectrum of 0.5 g CNTs/RO(6cm ³ /YO(20cm ³)
	sample show the highest decolouration efficiency of 36.28%,
	indicating bleaching effects of RO and YO in the decorated CNTs.
	The HRTEM image show the tubular network structure of the
	carbon nanotube irrespective of the colorant mixing ratio, and the
	EDS also confirmed that the samples consist of carbon, oxygen,
	and iron at different atomic percentages. The HRSEM images of
	decorated CNTs show that the topographical properties of CNTs
	were intact and not affected by the addition of RO and YO. XRD
	results confirmed the formation of highly graphitic carbon in the
	pigmented CNTS. This study demonstrated that the decolourised
	CNTs can act as reinforcing materials for the development of
	prosthetic feet for different skin types.

Effects of beryllium on the stability, electronic and optical properties of graphene: a first principles approach

Agbolade, L.O^{1,2,3*}., Tijjani, A^{1,2,4}., Adewale, A.A^{3,4}., Oyeshola, H.O³., Sanusi, Y.K³., and U. Hashim, M.N.A²

¹Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia, ²Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia, ³Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria, ⁴Centre for Frontier Materials Materials Research Universiti Malaysia Perlis, 0100, Kangar, Perlis, Malaysia

*E-mail: olatomiwaagbolade@gmail.com

NANO2022/P028 Abstract

Keywords	First-principles calculations using Density Functional theory were
Graphene Beryllium Stability Band gap Absorption Reflectivity Optoelectronics	used to determine the stability, and electronic and optical properties of graphene doped at the edges with Beryllium at 12.5% using the <i>WIEN2K</i> code. The effects of the concentration of the impurity on the crystal structure and the electronic and optical properties were determined using the generalized gradient approximation in Perdew-Burke Ernzehof (PBE) for the exchange- correlation potential. The results show that the Beryllium doped graphene is stable due to the negative value of the adsorption energy and the symmetry of graphene was preserved by doping at the edges of graphene. The transition of Pristine graphene from a semimetal to a semiconducting material due to the introduction of the Beryllium atom in the crystal structure of graphene was reported. The band gap created was found to be 0.9 eV for Beryllium-doped graphene and exhibit a P-type behaviour in this study. Furthermore, the reflectivity of pure and Beryllium doped graphene is seen to have the least penetrating power at the interval of 8.6 – 10 eV which corresponds to the interval of maximum absorption in both systems. The results also indicate that the Beryllium doped graphene is more conductive than pure graphene. Lastly, the results reveal that beryllium is energetically stable, and can engineer a wide band gap in graphene which can be manipulated to meet the specific applications in energy storage devices and optoelectronics.

Synthesis and characterization of carbon quantum dots/titanium dioxide hybridized photoanode for improved quantum dots sensitized solar cell

Oyeshola, H.O^{1*}., Lawal, A.M^{1*}., Balogun, S.W²., Adewale, A.A¹., Murithador, F.A¹., Ojeniyi, F.A¹., and Sanusi, Y.K^{1,3}

¹Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

²Department of Materials Science and Engineering, Kwara State University, Malete, Nigeria

³Nanotechnology Research Group (NANO⁺), Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: hooyeshola@lautech.edu.ng, lawalam@gmail.com

NANO2022/P029

Abstract

Keywords	The leading promising renewable and clean source of energy is
Synthesis	solar energy due to its free, non-polluting nature, and it is limitless
TiO ₂ nanoparticle	from source. The global energy crisis evokes an unprecedented
Carbon dot	interest for the development of equipment for efficient light-to-
Dye-sensitized solar cell	electricity conversion. Dye-sensitized solar cell (DSSCs) is
Renewable energy	considered as energy harvesting devices. There is an enthusiasm
	for improving the light harvesting materials in DSSCs, to give
	birth to Quantum Dots Sensitized Solar Cells (QDSSC). However,
	the main challenge causing the unsatisfactory power conversion of
	carbon quantum dots-sensitized solar cells is the low affinity
	1
	between titanium dioxide (TiO ₂) and carbon quantum dot (CQDs)
	leading to a poor adsorption of the CQDs on the TiO ₂ -coated
	photoanode. Therefore, this research focused on green synthesis of
	CQDs grown onto the TiO_2 surface for high performance QDSSC.
	The prepared TiO_2 paste was deposited onto a cleaned FTO glass
	using doctor blade technique. In situ method was used to grow
	CQDs on TiO ₂ photoanode surface. The optical and morphological
	characterizations were investigated using UV-Vis spectroscopy
	and scanning electron microscope while four point probes was
	done for the electrical properties. The carbon dots have peak
	absorption of 1.392 au at 370 nm wavelength as recorded from the
	UV analysis. SEM and TEM micrograph show regularly arranged
	particles that are not completely stacked. The fabricated thin film
	device has a sheet resistance of 227.48 Ω/cm^2 and power output of
	14.59 mW using four point probe. The results obtained show that
	an <i>in situ</i> growth method has greater benefits when it comes to
	enhancing the functionality of CQDSCs.

Green synthesis of silver nanoparticles using *Mangifera indica* stem bark extract and formulation of its pharmaceutical gel for antimicrobial and antioxidant applications

Adeyemi, O.E¹., Omoteso, O.A²., and Ajala. T.O^{1*}

¹Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan Nigeria ²School of Pharmacy, University of the Western Cape, Bellville, Cape Town, 7530, South Africa

*E-mail: tolulola1721@gmail.com; to.ajala@mail1.ui.edu.ng

NANO2022/B030 Abstract

Keywords Mangifera india AgNPs Green synthesis Antimicrobial Antioxidant Pharmaceutical gel This study reports the production of silver nanoparticles using aqueous and methanol Mangifera indica stem bark extracts as capping agents and formulation of pharmaceutical gel loaded with the nanoparticles. The extracts were prepared using standard procedures and utilized in biosynthesizing silver nanoparticles. Biosynthesis was ascertained through colour changes, UV-Visible and FTIR spectroscopy. Antioxidant activity of the extracts and biosynthesized nanoparticles were examined by DPPH method. The antimicrobial evaluation was carried out on Pseudomonas aeruginosa and Staphylococcus aureus. Pharmaceutical gels were produced (F1-F5), and loaded with the nanoparticles. Nanoparticles exhibited maximum absorption under UV-visible spectroscopy between 315-320 nm. FTIR spectrum showed that alkene and ester functional groups were conferred on the silver by the extracts used. The nanoparticles nanoparticles demonstrated antimicrobial activity against the organisms, which was significantly higher (p<0.05) than for extracts and reference drug. The antioxidant capacity was in a concentration-dependent manner but significantly lower (p < 0.05) than that of the reference drug. Formulated gels had acceptable organoleptic profiles, pH range of 6.8-7.1, high viscosity and pseudoplastic flow patterns. The *in-vitro* release profiles of the gels showed was gradual, with t₉₀ higher than 2 h. The release seemed to be influenced by the viscosity of the gel systems. In addition, the release kinetics of the nanoparticle loaded gel systems followed Higuchi model with r² ranging from 0.9958-0.9980. Thus, this study showed that Mangifera indica extracts were successfully used as bio-reducing agents in the synthesis of silver nanoparticles. The gel formulations had acceptable physical properties and release profiles.

Electromagnetic adsorption and polarization mechanism on reservoir sandstone with nanofluid interaction for oil mobility

Sikiru, S1*., Soleimani, H2., Abiodun, A.J3., and Sanusi, Y.K4

¹Centre for Subsurface Imaging, Universiti Teknologi PETRONAS 32610 Seri Iskandar Perak, Malaysia ²Department of Geoscience, Universiti Teknologi PETRONAS 32610 Seri Iskandar Perak, Malaysia ³ Department of Physicia and Physical Science, Lead City University, Ibadan, Nigeria ⁴Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso Nigeria

*E-mail: surajudeen86@gmail.com

NANO2022/P031 Abstract

Keywords	Using present approaches, improving oil mobility from reservoirs
Oil Mobility	with high temperatures and pressures is unfeasible. As a result,
Electromagnetic field	injection of dielectric nanofluid driven by an electric field has been
Graphene	proposed to increase oil mobility in terms of diffusion coefficient
Decane	and assessment of interfacial tension. When exposed to a direct
Hexadecane	electric field, nanoparticles are activated, allowing them to travel
Adsorption	more effectively and affect oil characteristics. The electronic
	characteristics of four nanoparticles were simulated and
	characterised in terms of band structures and partial density of
	state: zinc oxide, copper oxide, graphene, and magnetite. In the
	preliminary adsorption investigation, oil was represented by
	Decane and Hexadecene. According to the findings, nanoparticles
	have a high influence on heavy molecular chains (Hexadecene)
	and a low impact on low molecular chains (Decane). Magnetite's
	contact with the rock-oil interface lowered adsorption energy from
	23.99Kcal/mol to 21.63Kcal/mol (for Decane) and from
	28.53Kcal/mol to 18.81Kcal/mol (for Hexadecene). Because
	Decane had a limited impact, it was employed as an oil candidate
	in following investigations. In addition, the influence of salinity on
	the performance of nanoparticles was studied in adsorption
	research. Salinity increases from 0 ppm to 11000 ppm causes
	additive decrease with a more obvious influence on graphene.
	Following this, the diffusion coefficient of Decane via a simulated
	Angsi field sandstone structure was calculated at 120 °C after
	verifying the simulation methods and before and after exposure to
	the action of nanoparticles and an electromagnetic field. There is a
	trend in the concentration effect of nanoparticles on Decane
	diffusivity for Graphene (from 0.01wt percent to 0.05wt percent
	and 0.1wt percent). Magnetite performed best at 0.05wt percent.

The addition of an externally provided electric potential of 2V/cm and 0.05wt percent nanofluid concentration at 11000 ppm salinity resulted in increases of 1088.89% and 644.44% for graphene and magnetite, respectively. Because interfacial tension is another component that influences the effectiveness of oil mobilisation by nanoparticles, the activation of nanoparticles at the interface of oil and water by an electric field was also explored experimentally. The experimental Interfacial Tension findings proved the effectiveness of applied electromagnetic potential in activating nanofluid performance. The application of 2V/cm lowered interfacial tension by 99.49 percent for graphene and 15.66 percent for magnetite at the measurement equipment's highest practicable operational heat state of 100 °C. Graphene's greater effect can be ascribed to its hydrophobicity and strong dielectric properties.

Characterization and antimicrobial evaluation of biomimetically synthesized silver nanoparticles using aqueous leaf extract of *Morinda lucida* Benth. (Rubiaceae)

Egonu, S.N*., and Udengwu, O.S

Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Nigeria

*E-mail: sheily.egonu@unn.edu.ng

NANO2022/B032 Abstract

Keywords *Morinda lucida* Silver nanoparticles Green synthesis Antimicrobial activity In this sudy, the medicinal plant Morinda lucida was employed in the synthesis of silver nanoparticles (AgNPs). For the synthesis, 10 ml of aqueous M. lucida leaf extract was added to 90 ml of freshly prepared 3 mM silver nitrate (AgNO₃) solution in a flask. The mixture was allowed to stand at ambient temperature, in a dark cupboard for 48 hours. Positive AgNPs synthesis, indicated by a colour change from red to brown was further validated by UV-vis spectroscopy wherein an absorption peak at 460.51 nm was recorded. The utilitarian aspects of the particles were further characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The SEM images showed that particles were round to amorphous in shape. Amide, amine, alkene and alkynes were the most occurring functional groups from the FTIR spectra. The XRD diffractogram of AgNPs showed two peaks at 45.53° and 77.17° that correspond to miller indices of (200) and (311) respectively and an average crystalline size of 62.60 nm obtained using the Debye-Scherrer's formula. The DLS result indicated a Zaverage size of 235.1 nm and a polydispersity index (PDI) of 0.4. EDX analysis showed that elemental silver (Ag) had the highest atomic concentration of 64.50 %. Using the agar well diffusion assay, the nanoparticles exhibited antimicrobial activity against Pseudomonas aeruginosa and Aspergillus flavus. It can be concluded that *M. lucida* is capable of synthesizing stable, small-sized AgNPs with antimicrobial potential.

Applications of nanotechnology in animal nutrition: a review

Idowu, A.O^{1*}., Ojebiyi, O.O¹., Lateef, A²., Odunsi, A.A¹., Ola, A.K¹., and Akinola, A.O¹

¹Department of Animal Nutrition and Biotechnology, ²Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: oyeyemiidowu11@gmail.com

NANO2022/B033 Abstract

Keywords Nanotechnology Nanoparticles Animal nutrition Synthetic antibiotics Additives Nanotechnology deals with the development of materials on the nanometer scale to form nanomaterials which exhibit specific properties that are determined majorly by their size, shape, and crystal structure. Among nanomaterials, nanoparticles are commonly used in human medicine but their application in agriculture, animal nutrition and veterinary medicine is quite new. In order to meet the increasing demand on livestock industry, synthetic antibiotics are the major substances that are used as growth promoters. However, the use of antibiotics as feed additives is risky due to cross-resistance among bacterial strains and residues in tissues of the animal. Thus, the use of most synthetic antibiotic has been banned in many countries in the world, leading to reduction in usage and the search for alternative growth promoters with minimal or no residual effect has been intense in recent times. Many reports have suggested that nanoparticles may be good substances for animal growth promotion and antimicrobials due to the fact that some nanomaterials can remove toxins and pathogens. For instance, silver nanoparticles exhibit a strong antimicrobial effect. Also, nano-selenium, nano-chromium and nano-zinc supplemented in the diets of livestock improve their performance parameters, healthiness, and the quality of products obtained from them. Studies have shown that micro and macroelements in the form of nanoparticles can be better absorbed by animals thereby improving the quality of products obtained. Nanotechnology has the potential to transform the agriculture and livestock sector because of better bioavailability, small dose rate, and stable interaction of the nanomaterials with other components. Therefore, the use of nanoparticles is a good alternate approach that is safe and cost-effective for the control of pathogenic microbes and production improvement in livestock.

Green synthesis of gold nanoparticles from *Terminalia mollis M.A.* Lawson (Combretaceae)

Usman, A.B¹., Dozie-Nwachukwu, S.O^{1*}., Falayi, M.A¹., Onodugo, C.D¹., Onwuazor, O.P¹., and Odusanya, O.S^{1,2}

¹Medical Biotechnology Department, Biotechnology Advanced Research Centre, Sheda Science and Technology Complex, Abuja, Nigeria

²Pan African Materials Institute, African University of Science and Technology, Galadimawa, Abuja, Nigeria.

*E-mail: stella_doz@yahoo.com

NANO2022/B034 Abstract

Keywords Gold nanoparticles <i>Terminalia mollis</i> Aqueous extract Phytosynthesis FTIR UV-Vis spectroscopy TEM	Biosynthesis of gold nanoparticles (AuNPs) using plant extract is considered a simple, low-cost, and eco-friendly approach. This research work was aimed at synthesizing and characterizing AuNPs from <i>Terminalia mollis</i> leaf aqueous extract and also to investigate the effect of period of storage of aqueous extract prior to characterization. The synthesis of gold nanoparticles was confirmed by the colour change and further characterized using (UV-Vis) spectroscopy, FTIR, to further characterize the various functional groups in the organic layer that stabilized the particles. The morphology of the AuNPs was visualized using the Transmission Electron Microscope (TEM), while the energy- dispersive X-ray spectroscopy (EDX) confirmed the peaks of gold in the solution. The dynamic light scattering (DLS) showed that the nanoparticles were polydispersed. It was then concluded that <i>Terminalia mollis</i> is a potential candidate plant for use as source of green AuNPs for various applications especially medical applications including drug delivery. However, it was revealed that time of storage of extract had some proportional negative
	effect on AuNPs synthesized.

Optimization of green synthesis of gold nanoparticles from *Combretum* glutinosum

Onwuazor, O.P¹., Dozie-Nwachukwu, S.O^{1*}., Falayi, M.A¹., Onodugo, C.D¹., Usman, A.B¹., and Odusanya, O.S^{1,2}

¹Medical Biotechnology Department, Biotechnology Advanced Research Centre, Sheda Science and Technology Complex, Abuja, Nigeria

²Pan African Materials Institute, African University of Science and Technology, Galadimawa, Abuja, Nigeria.

*E-mail: stella_doz@yahoo.com

NANO2022/B035 Abstract

Keywords Gold nanoparticles <i>Combretum glutinosum</i> Optimization Phytosynthesis FTIR UV-Vis spectroscopy TEM	This study investigated the effect of varying the ratio of gold chloride to leaf extract required for the synthesis of gold nanoparticles (AuNPs) using <i>Combretum glutinosum</i> . Different ratios of 2.5 mM gold chloride to 5% (w/v) aqueous extract of <i>C. glutinosum</i> (3:1, 2.5:1, 2:1, 1.5:1 and 1:1) were used to synthesize AuNPs. The preliminary indication for the formation of AuNPs was seen in the colour change of the leaf extract from greenish
	AuNPs were further characterized using Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive X-ray (EDX) microanalysis. The finest spherical shaped and most stable AuNPs were observed in ratios 1.5:1 and 1:1, with particle size range of 20-50 nm and 20-70 nm respectively. These ratios can therefore be applied for subsequent production of AuNPs for targeted drug delivery.

Phytosynthesis of gold nanoparticles from an ethnomedicinal plant, *Khaya ivorensis* A. Chev. (Meliaceae)

Usman, A.B¹., Dozie-Nwachukwu, S.O^{1*}., Onwuazor, O.P¹., Onodugo, C.D¹., Falayi, M.A¹., and Odusanya, O.S^{1,2}

¹Medical Biotechnology Department, Biotechnology Advanced Research Centre, Sheda Science and Technology Complex, Abuja, Nigeria

²Pan African Materials Institute, African University of Science and Technology, Galadimawa, Abuja, Nigeria.

*E-mail: stella_doz@yahoo.com

NANO2022/B036 Abstract

Keywords	<i>Khaya ivorensis</i> is an evergreen tree that attains a height of 40 - 50
Gold nanoparticles	meters. Its medicinal values include the bitter-tasting bark being
Khaya ivorensis	used to treat cough, fever and anaemia. It can also be applied
Phytosynthesis Leaf extract Biocompatibility	externally to wounds, ulcers, tumors, and as an anodyne to treat
	rheumatic pains and lumbago. The root pulp is applied as an
	enema to treat dysentery. Additional value has been found in the
	ability to be used to synthesize of gold nanoparticles (AuNPs).
	Aqueous leaf extract of Khaya ivorensis was employed in the cold
	synthesis of AuNPs and the reaction was instant, evidenced by the
	colour change of the leaf extracts from green to ruby red. The
	AuNPs were characterized using the UV-Vis spectroscopy,
	Transmission electron microscopy (TEM), Fourier Transformed
	Infra Red (FTIR) and Dynamic Light Scattering (DLS). The results
	revealed the nanoparticles to be spherical, polydispersed and the
	sizes within the range of 30 nm - 60 nm. The nanoparticles were
	then used to study the route of entry of nanoparticles within the
	cells.

Biosynthesis, characterization and biomedical applications of gold nanoparticles from cassava (*Manihot esculenta*) leaf extract

Onodugo, C.D¹., Dozie-Nwachukwu, S.O^{1*}., Onwuazor, O.P¹., Usman, A.B¹., Falayi, M.A¹., and Odusanya, O.S^{1,2}

¹Medical Biotechnology Department, Biotechnology Advanced Research Centre, Sheda Science and Technology Complex, Abuja, Nigeria

²Pan African Materials Institute, African University of Science and Technology, Galadimawa, Abuja, Nigeria.

*E-mail: stella_doz@yahoo.com

NANO2022/B037 Abstract

Keywords Biosynthesized gold nanoparticles (AuNPs) are widely used in the field of health as biosensors, in cancer therapy, and as Gold nanoparticles antimicrobial agents, as well as in drug delivery systems. Manihot esculenta The Biosynthesis wide acceptance and various applications of biosynthesized Leaf extract AuNPs are based on their being biocompatible, eco-friendly, low Characterization cost and faster method of synthesis. In this study AuNPs were synthesized using cassava (Manihot esculenta) leaf extract as a reducing and stabilizing agent. A color change of gold chloride from pale yellow to red indicted the synthesis of AuNPs. The nanoparticles were then characterized by UV-Vis Spectroscopy, TEM, DLS, EDX and FTIR. The optimum plasmon resonance occurred at 530 nm. The sizes of the AuNPs ranged from 10 to 40nm. The FTIR measurements indicated that the AuNPs have coating of phenolic compounds with O-H stretch at the wave number of 3413 cm⁻¹, carbonyls stretch (C=O) at 1759 cm⁻¹ and C-N stretch at 1251 cm⁻¹. These biomolecules might be responsible for capping and efficient stabilization of AuNPs. This study indicates that these AuNPs could be effectively used in different biomedical applications.

Synthesis of cellulosic nanocrystal encapsulated limonene and its application as an insect pest repellent

Badmus, O.K*., Awujola, A.O., Adegoke, A.K., and Alayande, S.O

¹Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria

*E-mail: kassim.badmus@tech-u.edu.ng

NANO2022/P038 Abstract

Keywords	About one-third of the world's grain crop is lost each year during
Cellulose nanocrystal	storage due to insect pest infestation. The application of chemical
Sweet orange peel	insecticides as pesticides can lead to food toxicity and
Limonene	environmental pollution. Besides, the high treatment cost and pest
Insect repellancy	resistance are the other major setbacks associated with chemical
Controlled release	pesticides application. The valorisation of sweet orange peels
	through the extraction of limonene and its formulation into
	efficient insect pest repellent will ensure an improved food quality
	and better waste management. Limonene is an established natural
	pest repellent with problem of stability, liability and uncontrolled
	release. A novel strategies and innovative technologies for stable,
	efficient, targeted and precision delivery can achieved a better
	insect pest repellent property in the limonene. In the current
	investigations, Limonene and cellulose nanoparticle were
	extracted from citrus peel through reflux (ethanol) and acid
	hydrolysis respectively. The incorporation of the oil into the
	porous structure of nano-cellulose was done via solutions casting
	method. The resulting nanoparticles were characterized according
	to their size, morphology, encapsulation efficiency as well as their
	thermal stability. The bioassay studies as well as characterization
	showed the synthesis of an efficient, stable and controlled released
	limonene, impregnated in mesoporus crystalline cellulose
	nanoparticle.

Pectin-template derived from *Parkia biglobosa* as a novel route for the synthesis of silver nanoparticles

Ibraheem, S.A¹., Audu, E.A^{2*}., Jaafar, M¹., Atabat, A.J²., Tanimu, B.F²., Yahaya, J.Y²., and Barminas, J.T¹

¹Organic and Natural Products Division, ²Inorganic and Analytical Division, Scientific and Industrial Research Department, National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria

*E-mail: akuadenaudu@gmail.com; ephraim.audu@narict.gov.ng

NANO2022/P039 Abstract

Keywords AgNPs Parkia biglobosa Pectin Surface plasmonic resonance Antibacterial activity

The present study reports a simple and rapid synthesis of silver nanoparticles (AgNPs) via a one-step green approach using pectin obtained from the pulp of P. biglobosa as reducing agent. The synthesized nanoparticles were characterized usingTransmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), UV-Visible Spectrophotometer, Fourier Transform Infra-Red (FTIR) and Energy Dispersive X-ray Fluorescence (EDXRF) Spectroscopy. Different factors affecting AgNPs synthesis were studied by varying the volume of pectin solution, concentration of silver nitrate (AgNO₃) and pH of the reaction. Optimum conditions for synthesis of AgNPs were found to be at a pH of 12, 10 mM AgNO₃ concentration and 3 ml pectin solution. Photoluminescence study showed that AgNPs formation began within 5 min of the reaction time under sunlight. UV-spectra of all samples showed surface plasmonic resonance (SPR) typical of silver nanoparticles between 423 - 438 nm while results from FTIR revealed the presence of functional groups in pectin which could have assisted in the synthesis. Findings from EDXRF confirmed the presence of silver in the synthesized sample. Analysis of SEM and TEM confirmed the formation of well dispersed silver nanoparticles with average particle size within 20 - 30 nm. AgNPs showed antibacterial activities against Escherichia coli. The Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were found to be 50 and 100 μ g/ml respectively. Results showed that AgNPs synthesized using pectin from *P. biglobosa* exhibits great potentials for applications in biomedicine, catalysis, bioremediation and food preservation.

Mushroom-mediated metallic nanoparticles: potential applications in the production of indigenous fermented foods

Asemota. U.K

Sheda Science and Technology Complex, Abuja, Nigeria

*E-mail: peaceaka2011@yahoo.com

NANO2022/B040 Abstract

Keywords	This article focuses on the application of mushroom-mediated
Antimicrobials	metallic nanoparticles to improve the organoleptic properties and
Food safety	preservation of indigenous fermented foods. The use of
Fermented foods	mushrooms such as <i>Pleurotus florida</i> , <i>Pleurotus ostreatus</i> , <i>Pleurotus</i>
Mushroom	pulmonarius, Pleurotus eryngii, Pleurotus tuber-regium, Auricularia
Metallic nanoparticles	polytricha, Agaricus bisporus, and Lentinus spp. for the fabrication of
	metallic nanoparticles has been documented. Excellent in
	vitro antimicrobial activities of mushroom-mediated metallic (Zinc
	Oxide, Zinc Sulfide, Silver, Gold, Cadmium Sulfide, Titanium
	Dioxide, Iron, Selenium, and Copper) nanoparticles against food-
	borne pathogens such as Salmonella typhimurium, Pseudomonas
	fluorescens, Corynebacterium diphtheria, Clostridium perfrigens,
	Staphylococcus aureus, Escherichia coli, Streptococcus faecalis, Bacillus
	subtilis, Micrococcus luteus, Listeria innocua, Listeria monocytogens,
	Pseudomonas aeruginosa, Vibrio parahemolysis, Shigella sp, and
	Klebsiella pneumoniae have been validated by various researchers.
	In this review, the mechanism of microbial cell death induced by
	metallic nanoparticles synthesized using mushroom broth is
	detailed. The role of metallic nanoparticles as nanosensors to
	detect food pathogens for improved quality assurance and control
	systems is also summarized. More so, other applications such as
	the use of edible mushroom-based films and coatings impregnated
	with metallic nanoparticles as packaging platforms for indigenous
	fermented foods are highlighted.

Synthesis and application green silver nanoparticles on cotton fabric

Lawal, O.M*., Salisu, Z.M., Barminas, J.T., Umar, S.M., Ukpong, M.K., Suleiman, A.M., Ilyasu, A., Suleiman, I.A., Iroegbu, U., and Oneli, I.C

National Research Institute for Chemical Technology, (NARICT), Zaria, Nigeria

*E-mail: olamilekanlawal17@yahoo.com

Keywords	Multifunctional silver nanoparticles-coated cotton fabrics are
Green synthesis	gaining attention as a next generation wearable fabric. The current
Neem	study focuses on preparation of multifunctional cotton fabric
Silver nanoparticles	through green synthesis approach of silver nanoparticles (AgNPs)
Coating	using dip and sonication techniques. The AgNPs were produced
Antibacterial activities	by reacting silver nitrate with neem leaf extract (as a reducing and
Textile industry	capping agent). The synthesized AgNPs were characterized using
	Ultraviolent-Visible spectrophotometer. The silver nanoparticles
	coated on the cotton fabric were characterized using FTIR, SEM,
	XRF and XRD. The antibacterial activities of the silver nanoparticle
	coated fabric were investigated against Escherichia coli and
	Staphylococcus aureus. This study has a potential of providing green
	and simple method of manufacturing Ag-based antibacterial
	cotton fabric for application in medical and textile industries.

Nano Plus: Science and Technology of Nanomaterials Journal home page: https://www.stnanojournal.org/ ISSN: 2782-8166 (print) 2782-8174 (electronic)

Development of functional cotton fabric via chemically synthesized silver-nano coating

Ukpong, M.K*., Salisu, Z.M., Barminas, J.T., Umar, S.M., Lawal, O.M., Suleiman, A.M., Ilyasu, A., Sulaiman, I.A., Iroegbu, U., and Oneli, I.C National Research Institute for Chemical Technology, (NARICT), Zaria, Nigeria

*E-mail: kokomartins@vahoo.com

NANO2022/P042	Abstract
Keywords Silver nanoparticles Cotton fabric Antibacterial activity Ultrasonication UV-Vis spectra	High performance cotton fabric is gaining increasing awareness as a wearable fabric due to their attractive physical, chemical and antimicrobial properties. The current study elucidates a facile approach for the development of functional cotton fabric. Silver nanoparticles (AgNPs) were synthesized via chemical reduction method and coated on cotton fabric using dip and sonication technique. UV-visible spectra analysis was used to identify the formation of the silver nanoparticles. The successful deposition chemical composition and morphology of Ag NPs on cotton fabric were verified using FTIR, SEM, and XRD respectively. The antibacterial activity of the functional Ag-cotton fabric was also investigated. This study may provide a simple strategy to manufacture Ag-based antibacterial cotton fabric for potential applications in medical and textile industry.

Biosynthesis, characterization and antibacterial activities of cerium oxide and zinc oxide nanoparticles on fish pathogens - *Vibrio cholerae* RC3 and *Escherichia coli* C214 - a comparative study

Olugbojo, J.A^{1,2*}., Akinyemi, A.A²., Obasa, S.O²., and Dare, E.O³

¹Department of Biological Sciences, Bells University of Technology, Ota, Ogun State, Nigeria ²Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria

³Department of Chemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria

*E-mail: josephgbojo2012@gmail.com

NANO2022/B043 Abstra	ct

Carica papaya leaf extract Cerium oxide nanoparticles Zinc oxide nanoparticles Antibacterial agent Phytochemicals Scanning electron microscopy In recent times, plant-mediated synthesis of nanoparticles has gained much attentions due to its eco-friendliness, non-toxic, ease of preparation and biocompatibility compared with physical and chemical approach. Phytochemicals present in plants has been adjudged to be very useful as bio-reductants, stabilizers, and capping agents in the formation of nanoparticles. The aim of this study is to compare the antibacterial activities of biosynthesized Cerium oxide and Zinc oxide nanoparticles (CeO2NPs and ZnONPs) against bacteria fish pathogens (Vibrio cholerae strain RC3 and Escherichia coli strain C214). Qualitative analysis of Carica papaya leaf extract was performed to examine the type of biomolecules present, then biosynthesis was carried out. CeO2NP and ZnONP formed were characterized through UV-visible spectrophotometry, scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and Fourier transformed infrared spectroscopy to confirm the particles formation, morphology, elemental composition, shape, size, and functional group present in the samples. The result revealed monodispersed, spherical shaped CeO₂NPs of average size 46.34 nm, while ZnONP revealed cylindrical shaped nanoparticles with average size of 43.77 nm. Antibacterial sensitivity test also showed that CeO₂NP has a higher antibacterial potential than ZnONPs on Vibrio cholera (13.00±1.41 and 10.00±1.41) and E. coli strain $(8.00\pm1.41 \text{ and } 0.00\pm0.00)$. In view of this outcome, it is therefore suggested that CeO₂NP could be used effectively against Vibrio cholerae strain and E. coli than ZnONP with highly significant impact.

Synthesis and characterization of maggot-based chitosan-Silver nanocomposites for antimicrobial application in fisheries and aquaculture

Olugbojo, J.A^{1,2*}., Akinyemi, A.A²., Obasa, S.O²., and Dare, E.O³

¹Department of Biological Sciences, Bells University of Technology, Ota, Ogun State, Nigeria ²Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria

³Department of Chemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria

*E-mail: josephgbojo2012@gmail.com

NANO2022/B044 Ab

Biogenic silver nanoparticles from two species of Malvaceae: Synthesis, antimalarial, antitrypanosomal, antimicrobial efficacies and their potential towards HeLa cell line

Ogunmola, O.O^{1,2*}., Larayetan, R^{3,4}., Ayeni, G^{5,6}., Majolagbe, O.N⁷., and Adedosu, T.A¹

¹Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria

²Department of Chemistry, Emmanuel Alayande College of Education, Oyo, Nigeria

³Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Nigeria

⁴Department of Pure and Applied Chemistry University of Fort Hare, Alice 5700, South Africa

⁵Department of Biochemistry, Kogi State University, Anyigba, Nigeria

Abstract

⁶Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa

⁷Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: olurantiogunmola@gmail.com

NANO2022/B045

Keywords	Gossypium barbadense (GB) and Gossypium hirsitum (GH) both
Gossypium barbadense	belong to the cotton genus and the family Malvaceae; they are
Gossypium hirsutum	natural plants fibre of immense economic importance. To examine
AgNPs	antiplasmodial, antitrypanocidal and antimicrobial properties
Cytotoxicity	from the biogenic synthesis of silver nanoparticle (AgNPs)
Antimalarial activity Antitrypanosomal	obtained from the aqueous leaf extracts of two species (Gossypium
activity	barbadense GB and Gossypium hirsitum GH) of Malvaceae family.
IC50	Biogenic silver nanoparticles (AgNPs) were generated by utilizing
	aqueous extracts of Gossypium barbadense (GB) and Gossypium
	hirsitum (GH) plants to reduce silver nitrate (AgNO ₃). X-ray
	diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis),
	scanning electron microscopy (SEM), energy dispersive X-ray
	(EDX), transmission electron microscopy (TEM), and the fourier
	transformed infrared (FTIR) spectrophotometer were used to
	characterize them. The XRD spectra revealed that the AgNPs were
	crystalline, whereas the TEM pictures of GB-AgNPs and GH-
	AgNPs were well disseminated, with no agglomeration and
	irregular forms of average size of 21 nm. The nanoparticles
	biosynthesized revealed a cubic, triangular and spherical shaped
	materials and that the AgNPs were composed of silver, oxygen,
	and carbon only, according to the SEM and EDX results. The UV-
	vis analysis indicated that the biogenic AgNPs were detached,

with absorption bands of 468 and 472 nm, respectively. FTIR revealed absorption bands around 1700 cm⁻¹ that were common to both AgNPs, indicating C=O stretching due to the amide bond; additionally, a peak at 420 cm⁻¹ was detected for both GB and GH NPs, which is consistent with the absorption band of AgNPs. In vitro testing of the biosynthesized GB and GH AgNPs with Plasmodium falciparum of the chloroquine sensitive (3D7) strain revealed a very strong antimalarial activity with IC50s of 1.2 and 0.96 µg/mL, poor antitrypanosomal potentials, and a good record of inconsequential cytotoxicity against Human cervical cancer cell line (HeLa), as well as a strong inhibitor against Gram positive and negative bacteria strains. Both AgNPs have significant antiplasmodial and antibacterial properties. As a result, the biogenic AgNPs of GB and GH could be interesting candidates for use in nanomedicines and other areas where similar applications are required.

Effect of nanoparticles on biogas yield of cocoa pod co-digested with chicken manure at mesophilic temperature

Adebayo, A.O*., Olaniran, J.A., and Omoyeni, O.D

Department of Agricultural Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: aoadebayo57@lautech.edu.ng

NANO2022/P046	Abstract
---------------	----------

Keywords	Anaerobic digestion (AD) is the biological degradation of organic
Anaerobic digestion	matter carried out by a microorganism consortium in the absence
Biogas	of free oxygen. The main product of AD is biogas which is a
Cocooa pod	proven alternative to conventional energy sources. However, the
Chicken manure	slow rate of biodegradation along with the presence of impurities
Nanoparticles	have been reported in biogas. The addition of nanoparticles (NPs)
Fe ₃ O ₄	to AD process can influence its performance. This study aimed at
	determining the effects of NPs on anaerobic co-digestion of
	chicken manure (CM) and cocoa pod (CP). The chemical and
	thermal properties of CP, CM and inoculum were determined
	using standard methods. The experiment was carried out in a
	laboratory scale batch reactor operated at mesophilic temperature
	(37± 1°C). Anaerobically digested material from a preceding
	experiment was used as inoculum. The selected NPs based on
	literature was Fe ₃ O ₄ . The substrates, X (50% CM : 50% CP) and Y
	(50% CM + 50 % CP + NPs) were fed into the digestion vessesl.
	The volume of the biogas produced was measured daily. The
	composition of the gas produced [methane (CH ₄) and carbon
	dioxide (CO ₂)] were determined using Seitron, grade (IP-20) gas
	analyzer. The tests were conducted in two replicates. The organic
	dry matter (oDM) biogas yields of X and Y were 370.75 and 457.28
	NL/kg _{oDM} respectively while the fresh mass biogas yields were
	found to be 85.71 and 105.72 NL/kg _{FM} respectively. Thus, it can be
	concluded that the addition of NPs increases biogas yields of CM
	and CP co-digested at 1:1.
	0

Process optimization of furfural production from algae

Abdulbaqi, A

Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria

*E-mail: packsedit@gmail.com

NANO2022/P047 Abstract

Keywords Macroalgae RSM Furfural UV-Vis FTIR	This research studies the optimized furfural production from macroalgae biomass using Response Surface Methodology (RSM). Macroalgae biomass feed was subjected to delignification pretreatment using sodium chlorite and acetic acid. The pretreated feedstock later underwent acid hydrolysis to produce furfural, adopting the Box-Behnken experimental design to establish the relationship between varied process parameters – temperature (50 - 150 °C), time (30 - 90 min), and acid concentration (5 - 20%) – on the yield of furfural. Results of the delignification process demonstrate a significant reduction of lignin present (46%) in the biomass feed while revealing a 36% increase in the hemicellulose content of the feedstock. The regression analysis of the experimental data shows that the quadratic model best describes the relationship between process parameters and the desired response (Furfural yield), with a predicted R ² of 0.9562 and adjusted R ² of 0.9904. Data from the experimental design established the optimum conditions for maximum yield. 18.3% acid concentration 141 °C and 89.6 min led to a maximum predicted furfural yield of 63%. These conditions, when tested experimentally, were in close agreement with a 64.8% average yield. FTIR and UV spectroscopy was used to confirm the presence of furfural. The carbonyl functional group was detected
	predicted furfural yield of 63%. These conditions, when tested experimentally, were in close agreement with a 64.8% average yield. FTIR and UV spectroscopy was used to confirm the

GC-MS analysis and antibacterial activities of silver-mediated nanoparticles using ethanol extract of *Cassia sieberiana* DC

Amodu, S^{1*}., Aina, D.A¹., Ezeamagu, C.O¹., Oyewole, T.E¹., Adewunmi, G.A²., Animashaun, R.O²., and Adaramola, F.B²

¹Department of Microbiology, ²Department of Basic Sciences, School of Science and Technology, Babcock University, Ilisan Remo, Ogun State, Nigeria

*E-mail: samuelamodu7@gmail.com

NANO2022/B048	Abstract
---------------	----------

Keywords AgNPs Antibacterial activities *Cassia sieberiana* Chemical compounds Among various metal nanoparticles, silver nanoparticles (AgNPs) have gained significant attention. Studies have shown that AgNPs ensure effective drug delivery at target site. In this study, green synthesis of AgNPs using ethanol stem bark extract of Cassia sieberiana and its antibacterial activities was investigated. Dried stem bark of C. sieberiana was purchased from Oke Aje Market, Ijebu- Ode of Ogun State, Nigeria and pulverized. Extract was obtained by maceration in ethanol. Chemical compounds in C. sieberiana extract were investigated using Gas Chromatographyextract was Mass Spectrometry (GC-MS). The AgNPs characterized using UV-Visible Spectroscopy (UV-VIS), Fourier Transformed Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The GC-MS analysis of C. sieberiana extract revealed 3 chemical compounds (Benzimidazole, 7-Nonenoic acid and 6-Heptenoic acid). The UV-vis spectrum peaked at 420 nm. The FTIR identified biomolecules responsible for biogenic reduction of AgNPs at 3400 cm-1. The XRD indicated clear and distinct peaks confirming high purity and crystalline nature of phytosynthesized AgNPs. The SEM and TEM showed the AgNPs extract were spherical in shape with average sizes ≥ 50 extract showed Minimum nm. The AgNPs Inhibitory Concentration ranging between 0.35 and 1.40 µg/ml against Escherichia coli, Morganella morganii, Enterobacter hormaechei and Shigella flexneri. The study concluded that C. sieberiana AgNPs extract displayed higher antibacterial activities against gastroenteritis-associated bacteria. However, the exploration and development of novel antimicrobials as well as toxicological study of the phytosynthesized AgNPs are recommended for further studies.

Biogenic synthesis and antibacterial activities of silver-mediated nanoparticles using pulp extract of *Dacryodes edulis*

Amodu, S^{1*}., Aina, D.A¹., Ezeamagu, C.O¹., Oyewole, T.E¹., Adewunmi, G.A²., Animashaun, R.O²., and Ogunwenmo, K.O²

¹Department of Microbiology, ²Department of Basic Sciences, School of Science and Technology, Babcock University, Ilisan Remo, Ogun State, Nigeria

*E-mail: samuelamodu7@gmail.com

NANO2022/B049	Abstract
---------------	----------

Keywords Antibacterial activities *D. edulis* Multi-drug resistance Nanotechnology Silver nanoparticles The emergence of biogenic synthesis of silver nanoparticles had radically changed the field of nanotechnology because of its outstanding benefits. In this study, the green synthesis of silver nanoparticles (AgNPs) using pulp extract of Dacryodes edulis and its antibacterial activities were investigated against multi-drug resistant bacteria. Dacryodes edulis fruits were purchased from Ketu Market in Lagos, Nigeria. The seeds separated from the pulps after drying and the dried pulp pulverized using electric blender. Extract was obtained by maceration in aqueous solution. The green synthesized AgNPs were characterized by UV-Visible Spectrophotometry, Fourier Transformed Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Antibacterial activities of AgNPs extract were evaluated against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The AgNPs formed were dark brown in colour and showed maximum absorbance at wavelength of 415 nm while the distinct peaks at 3448.84 cm⁻¹. The FTIR spectrum indicated that protein molecules in the extract were responsible for the reduction and stabilization of the synthesized AgNPs. The SEM showed that the AgNPs were spherical shapes with the size ranging from 30-50 nm. The AgNPs particles also showed remarkable antibacterial activities (8 - 30 mm) against E. coli, P. aeruginosa and S. aureus. In conclusion, the results obtained from this study revealed that the green synthesized AgNPs pulp extract of *D. edulis* demonstrated higher antibacterial activities and could be relevant in the development of novel antibacterial agents for medical and pharmaceutical applications.

Electromagnetic pigging using superparamagnetic nanomaterials: a review

Wansah, J.F*., Akpan, J.J., Achimugu, A., Ocheje, J.A., Akeredolu, B.J., and Iyen, C Department of Pure and Applied Physics, Federal University Wukari, Wukari, Nigeria

*E-mail: fomunyuydzesinyuy@gmail.com

NANO2022/P050	Abstract

Keywords	A review of electromagnetic pigging of crude oil pipelines using
Keywords Crude oil Dewaxing Pigging Pipeline Nanomaterials	A review of electromagnetic pigging of crude oil pipelines using paramagnetic nanomaterials is the subject of this study. Crude oil, associated gas and other components while being transported in steel coated pipelines get cooler precipitating wet solid materials on pipes restricting flow thereby presenting economic, environmental and human risks. This work looks at descaling, dewaxing and protection of live pipelines <i>in situ</i> with electromagnetic pigs using superparamagnetic nanomaterials. In- line intelligent electromagnetic pigs are introduced into the pipeline for dewaxing and descaling followed by injection of superparamagnetic nanomaterials for curing and protecting of the inner pipeline walls. This can increase the durability and strength of the pipes by 3-8 times. Using superparamagnetic nanomaterials
	in oil and gas industry greatly enhances strength, durability, productivity and protects the environment.

Recovery of oil from drilling waste using nanomaterials: a review

Achimugu, A

Department of Pure and Applied Physics, Federal University Wukari, Wukari, Nigeria

*E-mail: achimuaugustina@gmail.com

NANO2022/P051 Abstract

Keywords	Nanotechnology has been used in various areas of human
Crude oil	endeavour including electronics, biomedical, pharmacy, and oil
Nanomaterials	
Nanomaterials Oil recovery Mobility improvement Drilling	and gas industries for over the years. Its application in oil and gas industry are of a major importance such as in drilling exploration refining, reservoir sensing, production operation flow assurance and enhanced oil recovery. The oil upstream industry conventional methods of recovering oil from drilling waste are not efficient such as the thermal methods, hydrocarbon gas methods and electromagnetic method. Therefore less expensive, more efficient and environmentally friendly enhanced oil recovery from drilling waste methods are needed. Nanomaterial can serve in that capacity, which is it acts as an agent to extract residual hydrocarbon trapped oil inside the reservoir and enhanced the recovery of oil from drilling waste by penetrating through pore throat. It also has the ability to reduce interfacial tension, control viscosity of aqueous soil which lead to reasonable alteration of the reservoir properties for oil mobility improvement. This review aims at providing insight on the use of nanomaterial in enhancing oil recovery from drilling waste in upstream industries. In addition the impact of nanomaterial on oil mobility ratio and its mechanism of oil recovery from drilling waste which include disjoining pressure, wettability alteration and interfacial tension
	reduction were extensively discussed and analyzed.

Photoresponsive performance of MoS₂-based photodetector using improved liquid phase exfoliation method

Akeredolu, B.J^{1,2,3*}., Ahemen, A¹., Amah, N¹., Onojah A.D¹., Shakya, J³., Gayathri, H.N³., and Ghosh, A^{3,4}

¹Department of Physics, University of Agriculture, Makurdi, Nigeria

²Department of Pure and Applied Physics, Federal University, Wukari, Nigeria

³Department of Physics, Indian Institute of Science, Bangalore 560012, India

⁴Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India

*E-mail: akeredolu@fuwukari.edu.ng

NANO2022/P052 Abstract

Keywords	The phoresponsivity of MoS ₂ -based photodetectors can be
MoS_2	achieved with highly dispersive molybdenum disulfide (MoS ₂
Photodectors	NSs) in liquid-phase exfoliation. Here, in this work, we
Liquid phase exfoliation	demonstrate an approach to improving the existing liquid phase
Photoresponsivity	exfoliation method to prepare highly dispersed nanosheets of
Optoelectronics	MoS ₂ in IPA/water solvent, for optoelectronics use. The
	nanosheets were characterized using various characterization
	techniques including scanning electron microscopy (SEM),
	transmission electron microscopy(TEM), atomic force microscopy
	(AFM) and Raman spectroscopy, x-ray diffractometer (XRD), and
	UV-Vis spectroscopy. Meanwhile, the nanosheet results obtained
	have an average lateral size of 350-500 nm, a thickness not less
	than 5 nm, and high crystallinity in the 2H semiconducting phase.
	We further demonstrate a MoS ₂ photodetector that has the
	advantage of utilizing the whole area as a junction for the effective
	separation of electron-hole pairs. The photoresponse performances
	of the MoS ₂ photodetector-based MoS ₂ were investigated. When
the bias voltage was 4 V, the photocurrent, photoresponsit	
	specific detectivity, and external quantum efficiency of MoS_2
	photodetector are 0.55 μ A, 6.11 mA/W, 3.4 ×10 ⁹ Jones, and the rise
	and fall times of the MoS_2 photodetector were 1.0 s and 1.22 s. The
	results provide an excellent method for the fabrication of
	inexpensive improved optoelectronic performance.

Distribution Rare Earth Elements in sediment cores from Lagos Lagoon, Nigeria

Shelle, R.O.D^{1,2}., and Oyatola, O.O^{1*}

¹Nigerian Institute for Oceanography and Marine Research, Lagos, Nigeria ²Federal University of Agriculture, Abeokuta, Nigeria

*E-mail: oyatolaoo@niomr.gov.ng	
---------------------------------	--

NANO2022/P053 Abstract

Keywords Lagos lagoon Rare earth elements Core sediment Contamination factor Enrichment factor Sediments are ecologically important components of the aquatic habitat and are also a reservoir of contaminants, which play a significant role in maintaining the trophic status of any water body. This study was carried out to assess the concentration of rare earth elements (REEs: La, Y, Ce, Pr, Nd, Sm, Eu, Gd, Dy and Ho) that are present in Lagos Lagoon. Sediment core samples (40 to 50 cm long) were collected, sliced at 10 cm each, dried and analyzed by Inductively Couple Plasma Mass Spectrometry (ICPMS). The concentrations of the REEs were below the baseline values (Upper Continental Crust) in all the stations except station 3. The calculated contamination factor (CF) and enrichment factor (EF) ranged from low to moderate contamination and no enrichment to moderate enrichment respectively. Pollution load index shows that the entire sample stations were not polluted.

Synthesis, characterization and antifungal efficacy of copper-chitosan nanoparticles

Atanda, S.A¹., Shaibu, O.R²., and Agunbiade, F.O²

¹Nigerian Stored Products Research Institute, Ilorin, Nigeria ²Department of chemistry, University of Lagos, Yaba, Lagos, Nigeria

*E-mail: the19icon@gmail.com

NANO2022/B054 Abstract

Keywords	The need for new class of antifungal agents has been on the increase due
Chitosan	to resistance by fungi to antimicrobial agents. Chitosan-mediated copper
Copper nanoparticles	nanoparticles was prepared in a facile step, characterized using Fourier
Antifungal activity	transform infra-red spectrophotometry (FTIR), scanning electron
Charcaterization	microscopy (SEM) and energy dispersive X-ray florescence (EDXRF) and
	its antifungal property evaluated against Aspergillus flavus, Aspergillus
	niger and Candida albicans. FTIR spectroscopy showed prominent peaks at
	3476, 1651, 1781 and 470 cm ⁻¹ which are typical bands of hydroxyl, amide,
	carbonyl functional groups and copper ligand respectively. EDXRF
	showed copper as the most intense peak, while SEM images revealed
ranging between 7.56-36.24 nm. Mean inhibition at a concentration mg/ml against <i>Aspergillus flavus, Aspergillus niger</i> and <i>Candida</i> was 30.50 mm, 50.67 mm, and 46.70 mm respectively. Copper ch	copper chitosan nanoparticles with monoclonal shape with diameter
	ranging between 7.56-36.24 nm. Mean inhibition at a concentration of 40
	mg/ml against Aspergillus flavus, Aspergillus niger and Candida albicans
	was 30.50 mm, 50.67 mm, and 46.70 mm respectively. Copper chitosan
	exhibited remarkable antifungal action on the tested organisms
	accentuated by the capping effect of chitosan.

Biosynthesis of silver nanoparticles using bacterial feather hydrolysates for the enhancement of growth and nutraceutical properties of leafy vegetables

Adelere, I.A^{1,2}., and Lateef A²

¹Department of Microbiology, Federal University of Technology, Minna, Nigeria ²Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

NANO2022/B055	Abstract
---------------	----------

Keywords Feather hydrolysate AgNPs Vegetables Phytostimulatory effect Phytopathogens Lipid peroxidate

This study reports the biosynthesis of silver nanoparticles (AgNPs) using feather hydrolysates (FH) obtained after chicken feather degradation by keratinolytic Bacillus safensis LAU 13 and Aquamicrobium defluvii FH 20. Phytostimulatory effect of the biogenic AgNPs on Corchorus olitorius, Amaranthus caudatus and Celosea argentea cultivated in soil treated with 50-150 µg/ml AgNPs was investigated compared to NPK fertilizer (15-15-15) and water as positive and negative controls, respectively. Vegetables grown with AgNPs (150 μ g/ml) of each of the two isolates demonstrated 1-1.58 folds improvement in seed germination, shoot height, root length, leaf sizes, chlorophyll contents and other growth parameters compared to their controls. Hydrogen peroxide and DPPH radicals scavenging activities of the AgNPs-fertilized vegetables were over 1.1-folds better than their respective controls. AgNPs treatment enriched the total phenolic, flavonoids, and proanthocyanidin compounds in the vegetables by more than 1.05-folds. The particles positively influenced the catalase activity of the vegetables and also induce lipid peroxidate (LPO) inhibition against ferrous ion (Fe²⁺) damage in the precision-cut liver slices by 1.05-1.21-folds improvement over the untreated plants. The AgNPs demonstrated inhibitory activity (60.33 - 88.20%) against phytopathogenic fungal strains of Aspergillus niger, Aspergillus flavus and Fusarium solani. Application of the biogenic AgNPs performed considerably better than the NPK fertilizer virtually in most cases. Thus, results obtained in this study indicate that the FH-mediated AgNPs have potential application as a better substitute to conventional inorganic fertilizer to promote sustainable agricultural food production in an eco-friendly manner.

The availability of critical minerals for Nigeria's renewable energy and economic development: an assessment of the role of nanotechnology

Aliu, H.O

Department of Petroleun Engineering, University of Ibadan, Ibadan, Nigeria

*E-mail: aliuhusseino@gmail.com

NANO2022/P056 Abstract

Keywords	Mineral assets form a major source of national wealth and can
Nanotechnology	provide a country with opportunity for economic development.
Minerals	Nigeria is rich in minerals identified as critical to energy transition
Renewable energy	and can leverage nanotechnology to optimize these mineral
National development	resources for developing her renewable energy, thereby
National wealth	improving her economy. This review aims to present the available
	minerals in Nigeria for clean energy production. It will also
	introduce significant applications of nanotechnology in the
	utilization of the minerals for renewable energy development. The
	papers reviewed are summarized carefully to give an overview of
	the role of nanotechnology and the potential of the minerals in
	improving the various sources of renewable energies. We hope
	that this paper will serve as a motivation to the government,
	researchers and investors to promote nanotechnology as a tool for
	the optimization of the minerals, development of Renewable
	energy and improvement of the economy.

Microstructural and nanomechanical properties of AlCoCuFeSi high entropy alloys for renewable energy applications

Dada, M^{1,2*}., and Popoola, P²

¹Department of Metallurgical and Materials Engineering, University of Lagos, Akoka, Nigeria ²Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

Abstract

*E-mail: dadadupeola@gmail.com

NANO2022/P057

Keywords	The mechanical properties of high entropy alloys fabricated via
Nanomechanical	additive manufacturing have been widely studied in the literature.
properties High entropy alloys	However, the investigation into the influence of heat treatment on
Laser additive	the nanomechanical performance and deformation behaviour of
manufacturing	additively manufactured high entropy alloys remains limited. In
	this study, the elastic modulus, hardness and creep at room
	temperature of AlCoCuFeSi high entropy alloys via additive
	manufacturing nanoscale were explored using a Nano indenter
	before and after heat treatment as metal hydrides for energy
	storage applications. The heat-treated high entropy alloys showed
	a 10% improvement in hardness and 23% increment in elastic
	modulus compared with the as-built high entropy alloys at 200
	mN applied load attributed to the significant grain refinement.
	However, a slight reduction in the creep resistance was observed.

Efficiency of carbon nanotubes from environmental waste as cement admixture

Gado, N*., Yahaya, I.M., and Izuagie, T

Department of Pure and Industrial Chemistry, Sokoto State University, Sokoto, Nigeria

*E-mail: ymansur64@gmail.com

NANO2022/P058 Abstract

	based materials. The traditional cement
Coconut shell materials have weak	k sustainability characteristics that are
Potato peel insufficient to develo	p high quality performance structures.
Cement composites Besides that, modifica	tions of compressive and tensile strength
Compressive stregth and durability duration	ons of cement composites are required.
Flextural strength Adding CNTs into cer	ment composites enhance and increase the
-	s well as the flexural strength comparing to
the normal compressiv	ve and flexural strength that are obtained
from plain cement co	omposites. In this research work, carbon
nanotubes were greer	n synthesized from environmental waste
specifically coconut she	ell, and potato peels and their efficiency as
cement admixtures	investigated. An increase in UV-Vis
absorbance in the regi	on 210 to 250 nm with time indicated the
synthesis of CNTs. T	he FTIR spectrum peak of CNTs in the
800–1800 cm ⁻¹ range in	ndicated dependent of CNTs on chirality.
The SEM morphology	y of CNTs displayed uniform and well-
1 07	re was an increase in the setting time when
0	and CNTs was increased above 3.5 wt%.
The CNTs-cement mi	xture shows an increase in compressive
	The results have indicated that the green
0	e good prospective as cement admixture.

Evaluation of chemical and antimicrobial activities of silver nanoparticles synthesised from *Calotropis procera* leaf extract

Sulaiman, H*., Yahaya, I.M., and Izuagie, T

Department of Pure and Industrial Chemistry, Sokoto State University, Sokoto, Nigeria

*E-mail: ymansur64@gmail.com

NANO2022/P059 Abstract Plant extract-based green synthesis of nanoparticles has become a Keywords AgNPs famous approach in the field of nanoscience. In this research, *Calotropis procera* silver nanoparticles (AgNPs) were prepared by an efficient and Green synthesis accomplished approach using Calotropis procera (CP) leaf extract as Antimicrobial activities a bio-reducing and stabilizing agent. The considerable colour transformation in the reaction mixture from light green to dark brown is an indication of the formation of CP-AgNPs. The assynthesized silver nanoparticles were chemically characterized by UV-Vis and FTIR. The UV-Vis spectrum obtained display the absorption in the visible range from 200 to 1000 nm, with a sharp peak appearing at 430 nm which confirms the formation of CP-AgNPs; additional absorption peaks at 280 nm is also observed, which belongs to the phytomolecules from Calotropis procera extract remaining on the surface of CP-AgNPs as capping agents. FTIR analysis confirms that the plant extract plays a dual role as a bio-reducing and capping agent. The tested CP-AgNPs displayed almost similar antimicrobial activities with that of standard antimicrobial drugs, such as streptomycin and nystatin. Their improved antimicrobial activity can be ascribed to the quality of resultant nanoparticles including, uniform size, shape, and aqueous colloidal stability of nanoparticles. Furthermore, it is concluded that the synthesis of silver nanoparticles using Calotropis procera extract is an inexpensive, easy and eco-friendly approach that eliminates the application of toxic reagents which may cause environmental damage.

Green synthesized carbon nanotubes as adsorbent of environmental toxic metals

Isah, A*., Yahaya, I.M., and Izuagie, T

Department of Pure and Industrial Chemistry, Sokoto State University, Sokoto, Nigeria

Abstract

*E-mail: ymansur64@gmail.com

NANO2022/P060

Keywords	Many methods have been reported to remove heavy metal ions
CNTs	from wastewater, such as chemical precipitation, coagulation, ion
Water treatment	exchange, membrane filtration, and electrochemical treatment, just
Metal absorption	to mention a few. These methods have been used in many
Banana peel	industries with good effects, but all of them have their own
Orange peel	shortcomings. Carbon nanotubes (CNTs) have attracted great
	attention in the wastewater purification of heavy metal ions due to
	their large specific surface area, small size, hollow and layered
	structure. In this study, the potential of carbon nanotubes
	produced from vegetables waste as adsorbents of toxic metals
were investigated by applying a one-step water assisted n that uses the calcining products of orange and potato peels materials to produce a sustainable and environmentally fr	
	carbon nanotubes adsorbent for environmental toxic metals. From
	our previous work chemical (UV-Vis and FTIR) and
	morphological characterisation of the green nanomaterials
	produced have proved them to have CNTs properties. In
	comparison between the two samples, the potato peels absorb
	more of Cu (0.12), Fe (0.40), Pb (0.14) and Ca (636.1) while orange
	peels absorb more of Mg (59.7) and Zn (0.06) as such banana peels
	have more absorbing capacity than the orange peel. However, for
	3 h and 5 h, the two samples were in equal absorption in which the
	banana peel absorbs more of Cu, Fe, and Ca while orange peel
	absorbs more of Mg, Zn and Pb. The results of both of banana and
	orange peels revealed that the higher the retention time, the more
	the absorption of the toxic metals by the CNTs.
	· · · · · · · · · · · · · · · · · · ·

Effect of TiB₂ addition on the microstructure evolution of FeCrV15+TiB₂ deposit fabricated via laser cladding technique

Jamiru, T1*., Popoola A.P.I²., Sadiku E.R²., and Aramide B.P¹

¹Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, Pretoria, South Africa

²Institute of Nano Engineering Research and Department of Chemical, Metallurgy and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

*E-mail: jamirut@tut.ac.za NANO2022/P061	Abstract
Keywords	To attain the needed performance, a growing trend in additive
Laser cladding	manufacturing of iron-based alloy is to modify the microstructure
FeCrV15+TiB ₂	by changing fabrication parameters or adding alloying
Coatings	components. In this study, a FeCrV15 alloy with variable amounts
Surface modification	of TiB ₂ was effectively produced using a laser cladding technique.
	Optical microscopy, scanning electron microscopy (SEM), X-ray
	diffraction (XRD), Vickers micro-hardness, and pin-on-disk
	tribometer were used to investigate the effect of TiB ₂ on
	microstructure, hardness, and wear performance. There was a
	high sporadic reaction as TiB ₂ powder was introduced; this
	resulted in cracks, pores, and defects in the microstructure of the
	deposit's heterogeneous structure. As a result, its hardness,
	corrosion and wear performance are reduced. However, when
	compared to FeCrV15+TiB ₂ , the FeCrV15 deposits demonstrated
	an enhanced and superior anti-wear and anti-corrosion potential
	as this study revealed.

Experimental study of the electrical conductivity and thermal conductivity property of micro-based Al-Cu-Nb-Mo alloy

Uwa, C.A1*., Jamiru, T1., and Sadiku, E.R2

¹Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, Pretoria, South Africa ²Institute of Nano Engineering Research and Department of Chemical, Metallurgy and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

*E-mail: nonso_uwa@yahoo.com

NANO2022/P062 Abstract

Al based alloys of a given compositional mix and manufacturing Keywords process have been found to be very good conductors of electricity. Al-Cu-Nb-Mo In the present study, Al, Cu, Nb, and Mo metal powders were Alloy Electrical conductivity weighed according to certain proportions and evenly distributed Thermal conductivity by mixing of the powder particles. The mixing of metal powders Sintering were carried using a tubular mixer for 12 h. The thermal conductivity of the mixed metal powders were measured with a Thermtest portable instrument. They were then poured into a graphite mold of 30 mm die diameter, pre-pressed, and put into a spark plasma sintering (SPS) furnace. The process parameters were varied as follows: axial pressure of 50 MPa was applied at a heating rate of 50 °C, and the sintering temperature range of 300-480 °C in a multi-stage heating method with a holding time of 10 min. The specimens were cooled to room temperature and unmolded to obtain aluminum-copper-niobium-molybdenum alloy. The electrical conductivity of the sintered alloy samples was obtained with HPS 2662 Precision Four-point Probe Meter. It was observed that the alloy with Al 93.5Cu4Nb1.5Mo1 composition with the density of 3.23 g/cm^3 gave the best property for electrical conductivity and thermal conductivity.

Green synthesis, characterization, antimicrobial activity and *in vivo* cytotoxicity test of silver nanoparticles for biomedical applications

Raimi, O.R¹., Lateef, A²., Raimi, M.A¹., Azeez, Z.M¹., Afolabi, F¹., and Afolabi, O¹ ¹Department of Science Laboratory Technology, Osun State Polytechnic, Iree, Nigeria ²Laboratory of Industrial Microbiology and Nanobiotechnology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Abstract

*E-mail: allahuli2009@gmail.com

NANO2022/B063

Keywords	Biogenic nanoparticles are two of the most clever weapons to fight	
Green synthesis	the multidrug resistant "superbugs" due to their excellent	
Silver nanoparticles	biocompatibility and broad-spectrum antibacterial propensity.	
Nauclea latifolia	Silver nanoparticles (AgNPs) was synthesized using aqueous	
Characterization	extract of Nauclea latifolia leaf. Electron microscope images	
Antimicrobial activity In-vivo-cytotoxicity	confirmed the synthesis of almost spherical shaped silver	
<i>In-oroo</i> -cytotoxicity	nanoparticles with size range from 10-39 nm. The antibacterial	
	activity was investigated against clinical isolates of twenty two	
	strains of Staphylococcus aureus, fourteen strains of Escherichia coli	
	and two strains of Candida species (C. albicans and C. brusei)	
	through disk diffusion assay. The highest zone of inhibition for <i>S</i> .	
	aureus, E. coli and Candida species were 16 mm at 120 µg/ml, 13	
	mm at 100 μ g/ml and 16 mm at 120 μ g/ml, respectively. No	
	significant toxicity was observed when the levels of rat serum	
	ALT, AST, GGT (liver function biomarkers) and creatine (kidney	
	function biomarker) were determined. However urea result	
	suggests damage to the kidney.	

Influence of valerate complexation and bromelain encapsulation on morphological characteristics of polyhydroxybutyrate micronized particles

Nasir-Naeem, K.O^{1*}., and Shittu, O.K²

¹Biotechnology Advanced Research Centre, Sheda Science and Technology Complex, Abuja, Nigeria ²Department of Biochemistry, Federal University of Technology, Minna, Nigeria

NANO2022/B064 Abstract

Keywords

Poly(3-hydroxybutyrate) Bromelain Polyhydroxyalkanoate encapsulant Drug formulation Synthetic and natural polymers have been a significant part of the drug formulation system that is essential for weight consistency, stability, and release of therapeutics. Polyhydroxyalkanoates (PHA) are polyesters produced by microorganisms from renewable resources. Poly(3-hydroxybutyrate) (PHB), and its Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer (PHBV) possess remarkable applications in drug delivery and formulation because of excellent biocompatibility and degradability. This study reports production of PHA nanoparticles loaded with bromelain and evaluated the influence of valerate complexation and bromelain encapsulation on the properties of PHB particles. PHB and PHBV particles with and without bromelain were prepared by triple emulsion solvent evaporation., and scanning electron microscopy (SEM) was used to examine the the physical and morphological characteristics of the PHB particles. Micrographs obtained showed spherical PHBV blank and bromelain-PHA particles with different surface appearances and sizes ranging from $25 - 50 \mu m$. The average particle sizes of the PHB and PHBV microparticles loaded with bromelain were 20.02 \pm 13.61 µm and 46.58 \pm 11.13 µm respectively. The PHB microparticles presented a smoother surface with a few surface pores, while the bromelain-PHBV microparticles were rough with numerous surface pores. The variation observed in the microparticle surface textures and sizes could result from the influence of complexation of PHB with valerate as well as the interaction of the bromelain. These physical and morphological analyses can help shed light on the mechanism of release of the encapsulant in the PHA microparticulate drug delivery system.

Optimization of crosslinked starch/graphene oxide nanocomposite films for fruits and vegetable packaging

Kalu, A.O^{1,2*}., Egwim, E.C^{1,3}., Jigam, A.A¹., and Muhammed, H.L¹

¹Department of Biochemistry, Federal University of Technology Minna, Nigeria

²Department of Environmental Biotechnology and Bio-conservation, National Biotechnology Development Agency (NABDA), Abuja, Nigeria

³Centre for Genetic Engineering and Biotechnology (CGEB), Department of Biochemistry, Federal University of Technology, Minna, Nigeria

*E-mail: fredykalu@gmail.com

NANO2022/B065 A

Abstract

Keywords

Starch Graphene oxide Nanocomposite Optimization Packaging film The aim of this study was to develop starch-graphene oxide nanocomposite films for packaging applications with optimization carried out to determine the best combination of crosslinked starch, glycerol and graphene oxide for the mechanical, barrier, antimicrobial properties as well as film solubility. Cassava starch was crosslinked with oxidized sucrose while graphene oxide was synthesized using hummers method. Nanocomposite films were developed using design expert software and a Box-Behnken design at three levels of each independent variable at five centre point replicate was employed. The range of values were obtained by preliminary studies and the effect of the independent variable on response factors were studied which included tensile strength, young modulus, elasticity, water vapour transmission rate, oxygen transmission rate, solubility and antimicrobial activity against S. aureus, E. coli and Aspergillus sp. The average particle size of graphene oxide was 65.2 nm and the particle size distribution had a poly-dispersity index (PDI) of 0.174. The model equations for each response factor were developed of which as a two factor interaction and quadratic model was suggested. The optimal formulation for each nanocomposite film was 4.74 g crosslinked starch/2.63% graphene oxide/36.83% glycerol and the RAMPs plot showed that the model had a desirability of 0.731. In conclusion, optimisation of starch-graphene oxide films showed different effects of the independent variables on the mechanical, barrier, and solubility properties. The low difference between the predicted values and experimental values of indicates that the nanocomposite film was suitable for packaging application.

Fabrication of a facile β-cyclodextrin based nano-composite towards 2,4dinitrophenol removal

Mamman, S*., Shuaibu, B.S., Isah, J., Mohammed, J., and Osuegba, O.S Department of Chemistry, Nasarawa State University, Keffi, Nigeria

*E-mail: mammansuwaibatu@nsuk.edu.ng

Abstract	
facile β-cyclodextrin based magnetic adsorbent	
rophenol (2,4-DNP) removal was fabricated and aterial was characterized by Fourier transform copy (FTIR), scanning electron microscope (SEM), etron microscopy (TEM), and X-ray diffraction operational parameters such as effect of pH, eent dosage, initial concentration and temperature and evaluated via a batch adsorption experiment. kinetic data revealed that the uptake of this vs pseudo second order model. Freundlich and best fitted the adsorption equilibrium data. The ss was exothermic and spontaneous and a lower oured the adsorption process. Furthermore, ing, inclusion complex formation and π - π e the main types of interactions involved.The erial was green, easy to prepare and can be in large scale without raising environmental	
(

Mycelia and lipase inhibitory properties of *Cassia fistula*-mediated gold nanoparticles

Ajayi, V.A^{1,2*}., and Lateef, A²

¹Department of Science Laboratory Technology, ²Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: vaajayi@lautech.edu.ng

NANO2022/B067	Abstract
---------------	----------

Keywords AuNPs Biosynthesis *Cassia fistula* Antifungal activity Lipase inhibition Over the last few decades, gold nanoparticles (AuNPs) have been reported for their tremendous impact on the health and food sector. The biologically synthesized AuNPs have attracted increased attention because they are environmental friendly and permits the usage of a very small amount of chemicals accompanied with limited toxic byproduct. In this study, the crude aqueous leaf extract of Cassia fistula (LCf) mediated synthesis of AuNPs and characterization via UV-visible absorption spectrum analysis, Fourier transmission infrared (FTIR) analysis, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis was carried. The green-mediated LCf-AuNPs were evaluated for their mycelia and pancreatic lipase inhibitory properties. The colour change from colourless to dark brown and UV-visible absorption at 580 nm confirmed the synthesis of gold nanoparticles (LCf-AuNPs). The SEM micrograph displayed particles with both spherical and irregular shapes, while the EDX spectra revealed gold as the most prominent metal. Also, the FTIR spectroscopic analysis showed peaks that correspond to the OH compound of phenols or alcohol, -NH₂, N-H amines of protein, and C=O, C-O of carbonyl groups. Significant mycelia inhibitory effect of LCf-AuNPs was observed against the growth of Aspergillus niger (64.29%), A. flavus (50.70%), A. fumigatus (47.73%), and Fusarium solani (47.65%). Similarly, the LCf-AuNPs exhibited pancreatic inhibitory activity comparable with the orlistat standard ranging from 17.62±0.58 to 88.93±0.81% with an IC₅₀ value of 121.3 µg/ml. The outcome of the research studies revealed the potential of green-mediated LCf-AuNPs for suitable application as anti-fungal and anti-obesity agents in pharmaceutical industries.

Eco-friendly synthesis of silver nanoparticles using stem bark of *Jatropha tanjorensis* and evaluation of anti-trypanosomal activity

Abedo, A.J*., and Abutu, S.R

Nigerian Institute for Trypanosomiasis Research (NITR), No. 1, Surami Road, Kaduna, Nigeria

*E-mail: onyinoyi1999@gmail.com

NANO2022/B068 Abstract

Keywords Jatropha tanjorensis Green synthesis Silver nanoparticles Anti- trypanosomal activity	African trypanosomiasis is a parasitic protozoan disease which affects man and his domesticated animals, if not treated it can be very fatal. In the last two decades, nanoparticle research has become one of the most important areas in modern materials science research. More recently green synthesis of silver nanoparticles (SNPs) is gaining recognition and is widely used in the field of medicine due to their unique chemical and physical properties. This paper reports the phytochemical, synthesis of Silver Nanoparticles (AgNPs) using aqueous stem extract of <i>Jatropha tanjorensis</i> and investigating their anti trypanosomal potentials. The phytochemical screening of this plant extract revealed the presence of some secondary metabolites such as flavonoids, tannins and saponins among others which act as both reducing and capping agents. Stable and spherical shape controlled Ag NPs were formed within 5-10 min after slow heating on water bath at 50 °C. The synthesized silver nanoparticles were characterized using UV- visible spectroscopy, Scanning Electron Microscopy (SEM), X-ray Diffractormeter (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The UV-Visible spectrum of colloidal solutions had absorbance peaks at 526.6- 620.4 nm. The formed silver nanoparticles were found to be spherical in shape with average size in the range of 30-120 nm. Furthermore, synthesized nanoparticles were also tested for anti-parasitic activity on <i>Trypanosoma brucei brucei in vitro</i> which showed good activity with MIC value of 0.25 mg/ml.
---	---

Production of graphene using local contents

Elemo, E*., Adegbe, A., and Obarolo, A

Department of physical and life Sciences, National Space Research and Development Agency, Abuja

*E-mail: enochelemo@gmail.com

NANO2022/P069 Abstract

Keywords Graphene is a new material that has been making waves and Graphene attracting a lot of attention in the last decade and is being Exfoliation researched on because of its superlative properties, and its various Energy storage interesting and innovating uses. The production of graphene using **Batteries** a top-down graphene exfoliation method from graphite, such as liquid-phase exfoliation was adopted in this work, which is efficient due to its low cost and high scalability potential. Due to the energy storage problem facing the world in terms of functionality of fundamental materials, we ventured into the enhancement and fabrication of fast charging, high capacity and efficient batteries using graphene. Power bank of 26000 mAh and 40000 mAh capacity were fabricated from the scratch using graphene as its primary component. A car battery, inverter battery and a 12 volt rechargeable fan battery were also enhanced with the graphene after the initial lithium ion in the battery were removed from the battery, and the results showed great outcome with each of the batteries sufficiently powered the car, the house and the fan, respectively. The results however showed that there is the need to produce cells ourselves that are compactable with the grapheme produced.

Biofabricated Ti-AgNPs in functionalized nanotextiles inhibited MDR bacterial strains and fungi

Aguda, O.N^{*}., and Lateef, A

Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: opeaguda@gmail.com

NANO2022/B070 Abstract

Keywords AuNPs Biosynthesis *Cassia fistula* Antifungal activity Lipase inhibition Humankind from time immemorial has used textiles for diverse purposes that include manufacturing of consumer personal products, industrial, sports, security and military outfits, as well as medical utilities among others. Being made of biomaterials, fabrics are naturally susceptible to microbial attack that can promote their deterioration, thereby loosing value and functionalities. Microbes produce wide range of enzymes to degrade cellulose, hemicellulose, keratin as well as additives such as vanishes, dyes, adhesives and fillers in fabrics. Microbial deterioration of fabrics results in bad odours, loss of strength, discolouration and dissemination of pathogens that can cause diseases. Thus, there is need to infuse textiles with antimicrobial agents to offer biocidal properties. In this work, Ti-AgNPs (11.40-28.93 nm) that were fabricated by the wastewater of fermented seeds of Parkia biglobosa were used to functionalize silk and cotton with the aid of acrylic binder, and tested against MDR strains of Klebsiella oxytoca, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus mirabilis, Klebsiella pneumoniae, and Escherichia coli. The antimicrobial potency of the fabrics functionalized with nanoparticles was remarkable with antibacterial activities of 15-24 mm against MDR strains and complete suppression of the growth of Aspergillus niger even after 5th cycle of washing. The nanotextiles obtained in this study can find useful specialized applications in the healthcare in producing aprons, beddings, wound-dressing fabrics and facemasks to prevent dissemination of pathogens, stem the scourge of drug resistance and hospital-acquired nosocomial infections. This will engender good health and well-being towards the attainment of SDG 3 of the United Nations.

Exploration of vertebrate animal wastes for the green synthesis of nanoparticles: A review

Abodunrin, A.E¹., Yekeen, T.A^{1*}., Azeez, M.A¹., Lateef, A¹., Badmus, J.A²., and Adebayo, E.A¹

¹Department of Pure and Applied Biology, ²Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

NANO2022/B071	Abstract

Keywords Nanotechnology is an emerging science reputed to have potential Nanotechnology to solve various problems challenging existence of mankind. The Vertebrate series of benefit of nanotechnology are linked to various field of Animal waste human endeavour that includes but not limited to medicine, Eco-friendly engineering and sciences. Different techniques such as biological, Biomolecules chemical and physical are employed for the synthesis of nanoparticles. Biological method otherwise known as green synthesis is believed to be the safest due to its simplicity, involvement of no/reduce chemicals and biodegradability. The commonly used materials for the green synthesis are microorganisms and plant materials. These materials possess biomolecules as reducing and capping agents for nanoparticle production. The abundant presence of these biomolecules is reported in vertebrate animal waste materials. The waste generated by vertebrate animals are sources of concern because of poor waste management, as it litters and causes nuisance to the environment. The biomolecules in the wastes of vertebrate animals make them potential agents for nanoparticles synthesis but they are rarely utilized. Human hair, chicken feathers, cow urine, sheep urine, animal fur, and egg shell are few examples of wastes with beneficial biomolecules. Employing these waste materials for the green production of nanoparticles will provide value addition to the waste and thereby reduce environmental burden. Moreover, the use of vertebrate waste materials will assist in turning waste to wealth and breaking new ground. In our laboratory, the potential of human hair, animal fur, egg shell and chicken feather had been explored to synthesize nanoparticles for various applications. This review thus focused on the use of waste materials from vertebrate animals for green synthesis of nanoparticles and various budding applications.

Synthesis, characterization and application of a composite adsorbent in remediation of bitumen-polluted water

Ayelabola, J.A., Abiola, B.E*., Olabemiwo, O.M and Esan, A.O

Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: babawale2008@gmail.com

NANO2022/P072 Abstract

Keywords Nanotechnology Nanocomposite Bitumen water Remediation ZnNPs *Helix pomatia Echinochloa pyramidalis* Nanotechnology is one of the most advanced methods proven to be an effective method of polluted water remediation as a result of their high surface capacity. This study reports the remediation of bitumen-polluted water (BPW) using a composite adsorbent prepared from synthesized zinc nanoparticles and activated carbon of Helix pomatia (HP). The leaf extract of Echinochloa pyramidalis (antelope grass) was used to synthesize zinc nanoparticles (ZnNPs). The synthesized ZnNPs was characterized using Ultraviolet-Visible Spectroscopy, Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transform Infrared (FTIR). The synthesized ZnNPs was impregnated on activated carbon of Helix pomatia to produce a composite adsorbent. The prepared composite adsorbent was applied to remediate BPW collected from Agbabu River, in Ondo State, Nigeria using the column adsorption technique. The UV-visible spectrum of ZnNPs shows maximum absorbance at 550 nm, while FTIR spectrum showed peaks at 1612, 2356 and 3148 cm⁻¹ which indicate the C=C stretch in alkene, N-H stretching in amides and C-H stretch in alkyne respectively. Zn was prominent (70.56%) in the EDX spectrum and SEM analysis depicted spherical particles of about 124 nm. The nanocomposite remediated the bitumenpolluted water with pH, COD, turbidity, conductivity, TPH, oil and grease and BOD of 6.8, 18.54 mg/l, 4.92 NTU, 143.5 µscm⁻¹, 0.81 mg/l, 0.13 mg/l and 12.04 mg/l, respectively. The result of this study shows that the quality characteristics of bitumen polluted water were found to be improved when the composite adsorbent was applied in the treatment of the BPW.

Nanoparticles in the soil environment and potential for agricultural improvement

Azeez, M.A., Durodola, F.A*., Adubi, A.O., Lateef, A., Yekeen, T.A., and Adebayo, E.A

Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*E-mail: feliciadurodola@gmail.com

NANO2022/B073	Abstract
---------------	----------

Keywords In the soil environment are found naturally occurring organic and Nanoparticles inorganic particles, which are in the nanoscale range. The two Soil ecosystem forms are mostly associated together as a unit mass while in some Agriculture cases the organic one which exists as colloids forms coatings over Flora the surfaces of the inorganic particles. They provide support for Fauna both plants and animals, and also serve as medium for transportation of nutrients, pollutants, organics and heavy metals. Advancement in knowledge and scientific research has led man to creation of different nanoparticles and their subsequent manipulations to deliver goods and services. One of such is in the field of agriculture, which is the backbone of industrial revolution as sources of raw materials. The need to improve crop yield, and devise avenue for their better production and protection in a sustainable way has spurred the development of potentials for manufacture of nano-based materials. Many of these materials such as nanoparticles and nanoformulations, nano-fertilizers, nanopesticides and insecticides, nanobacteriocides and fungides, and nanosurfactants are in the market stall ready for use. Of serious concern is the wider use of these nanoproduct in the soil environment and their subsequent accumulation in the soil ecosystem. Apart from the immediate benefits, the fear of possible adverse effects of their long-term applications on soil microorganisms, flora, fauna, and more importantly on edaphic factors leading to soil infertility and impoverishment are unexpected. Therefore, this review explores the various benefits of nanomaterials on soil ecosystem, the expected fallout from long term applications and suggestions for sustainable use in agriculture.